Hypericin is a naturally occurring substance found in the common St. John's Wort (Hypericum species) and can also be synthesized from the anthraquinone derivative emodin. As the main component of Hypericum perforatum, it has traditionally been used throughout the history of folk medicine. In the last three decades, hypericin has also become the subject of intensive biochemical research and is proving to be a multifunctional agent in drug and medicinal applications. Recent studies report antidepressive, antineoplastic, antitumor and antiviral (human immunodeficiency and hepatitis C virus) activities of hypericin; intriguing information even if confirmation of data is incomplete and mechanisms of these activities still remain largely unexplained. In other contemporary studies, screening hypericin for inhibitory effects on various pharmaceutically important enzymes such as MAO (monoaminoxidase), PKC (protein kinase C), dopamine-beta-hydroxylase, reverse transcriptase, telomerase and CYP (cytochrome P450), has yielded results supporting therapeutic potential. Research of hypericin and its effect on GABA-activated (gamma amino butyric acid) currents and NMDA (N-methyl-D-aspartat) receptors also indicate the therapeutic potential of this substance whereby new insights in stroke research (apoplexy) are expected. Also in the relatively newly established fields of medical photochemistry and photobiology, intensive research reveals hypericin to be a promising novel therapeutic and diagnostic agent in treatment and detection of cancer (photodynamic activation of free radical production). Hypericin is not new to the research community, but it is achieving a new and promising status as an effective agent in medical diagnostic and therapeutic applications. New, although controversial data, over the recent years dictate further research, re-evaluation and discussion of this substance. Our up-to-date summary of hypericin, its activities and potentials, is aimed to contribute to this process.
The aim of this study was to treat patients for ectocervical dysplasia [cervical intraepithelial neoplasia (CIN) grades 1 and 2] and associated human papilloma virus (HPV) infections with photodynamic therapy (PDT). In 20 patients, 5-aminolevulinic acid (5-ALA, 12% w/v) was applied topically with a cervical cap 8 h prior to illumination. A thermal light source (150 W halogen lamp) emitting a broadband red light (total energy: 100 J/cm2, fluence rate: 90 mW/cm2) was used for superficial illumination of the portio. In addition, an Nd:YAG pumped dye laser (652 nm) was used to illuminate the cervical canal (total energy: 50 J/cm2, fluence rate: 300 mW/cm2). Preliminary results of follow-ups at 1, 3, 6, and 9 months posttherapy showed a cytological improvement in the grading of the PAP smears in 19 patients and the eradication of cervical HPV in 80%. These results demonstrate that ectocervical dysplasia and associated HPV infections can be treated by PDT.
The diverse responses of different cancers to treatments such as photodynamic therapy of cancer (PDT) have fueled a growing need for reliable predictive markers for treatment outcome. In the present work we have studied the differential response of two phenotypically and genotypically different breast adenocarcinoma cell lines, MCF7 and MDA-MB-231, to hypericin PDT (HYP-PDT). MDA-MB-231 cells were 70% more sensitive to HYP PDT than MCF7 cells at LD50. MCF7 were found to express a substantially higher level of glutathione peroxidase (GPX4) than MDA-MB-231, while MDA-MB-231 differentially expressed glutathione-S-transferase (GSTP1), mainly used for xenobiotic detoxification. Eighty % reduction of intracellular glutathione (GSH) by buthionine sulfoximine (BSO), largely enhanced the sensitivity of the GSTP1 expressing MDA-MB-231 cells to HYP-PDT, but not in MCF7 cells. Further inhibition of the GSH reduction however by carmustine (BCNU) resulted in an enhanced sensitivity of MCF7 to HYP-PDT. HYP loading studies suggested that HYP can be a substrate of GSTP for GSH conjugation as BSO enhanced the cellular HYP accumulation by 20% in MDA-MB-231 cells, but not in MCF7 cells. Studies in solutions showed that L-cysteine can bind the GSTP substrate CDNB in the absence of GSTP. This means that the GSTP-lacking MCF7 may use L-cysteine for xenobiotic detoxification, especially during GSH synthesis inhibition, which leads to L-cysteine build-up. This was confirmed by the lowered accumulation of HYP in both cell lines in the presence of BSO and the L-cysteine source NAC. NAC reduced the sensitivity of MCF7, but not MDA-MB-231, cells to HYP PDT which is in accordance with the antioxidant effects of L-cysteine and its potential as a GSTP substrate. As a conclusion we have herein shown that the different GSH based cell defense mechanisms can be utilized as predictive markers for the outcome of PDT and as a guide for selecting optimal combination strategies.
Currently the greatest challenge in oncology is the lack of homogeneity of the lesions where different cell components respond differently to treatment. There is growing consensus that monotherapies are insufficient to eradicate the disease and there is an unmet need for more potent combinatorial treatments. We have previously shown that hypericin photodynamic therapy (HYP-PDT) triggers electron transport chain (ETC) inhibition in cell mitochondria. We have also shown that tamoxifen (TAM) enhances cytotoxicity in cells with high respiration, when combined with ETC inhibitors. Herein we introduce a synergistic treatment based on TAM chemotherapy and HYP-PDT. We tested this novel combinatorial treatment (HYPERTAM) in two metabolically different breast cancer cell lines, the triple-negative MDA-MB-231 and the estrogen-receptor-positive MCF7, the former being quite sensitive to HYP-PDT while the latter very responsive to TAM treatment. In addition, we investigated the mode of death, effect of lipid peroxidation, and the effect on cell metabolism. The results were quite astounding. HYPERTAM exhibited over 90% cytotoxicity in both cell lines. This cytotoxicity was in the form of both necrosis and autophagy, while high levels of lipid peroxidation were observed in both cell lines. We, consequently, translated our research to an in vivo pilot study encompassing the MDA-MB-231 and MCF7 tumor models in NOD SCID-γ immunocompromised mice. Both treatment cohorts responded very positively to HYPERTRAM, which significantly prolonged mice survival. HYPERTAM is a potent, synergistic modality, which may lay the foundations for a novel, composite anticancer treatment, effective in diverse tumor types.
Photodynamic inactivation (PDI), the light-induced and photosensitizer-mediated overproduction of reactive oxygen species in microorganisms, represents a convincing approach to treat infections with (multi-resistant) pathogens. Due to its favourable photoactive properties combined with excellent biocompatibility, curcumin derived from the roots of turmeric (Curcuma longa) has been identified as an advantageous photosensitizer for PDI. To overcome the poor water solubility and the rapid decay of the natural substance at physiological pH, we examined the applicability of polyvinylpyrrolidone curcumin (PVP-C) in an acidified aqueous solution (solubility of PVP-C up to 2.7 mM) for photoinactivation of Gram(+) and Gram(-) bacteria. Five micromolar PVP-C incubated for 5 minutes and illuminated using a blue light LED array (435 ± 10 nm, 33.8 J cm(-2)) resulted in a >6 log10 reduction of the number of viable Staphylococcus aureus. At this concentration, longer incubation periods result in a lower phototoxicity, most likely due to degeneration of curcumin. Upon an increase of the PVP-C concentration to 50 μM (incubation for 15 or 25 min) a complete eradication of Staphylococcus aureus can be achieved. As expected for a non-cationic photosensitizer, cell wall permeabilization with CaCl2 prior to addition of 50 μM PVP-C for 15 min is necessary to induce a drop in the count of the Gram(-) Escherichia coli for more than 3 log10. As both constituents of the formulation, curcumin (E number E100) and polyvinylpyrrolidone (E1201), have been approved as food additives, a PDI based on PCP-C might allow for a very sparing clinical application (e.g. for disinfection of wounds) or even for employment in aseptic production of foodstuffs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.