Anthropometric quantities are widely used in epidemiologic research as possible confounders, risk factors, or outcomes. 3D laser-based body scans (BS) allow evaluation of dozens of quantities in short time with minimal physical contact between observers and probands. The aim of this study was to compare BS with classical manual anthropometric (CA) assessments with respect to feasibility, reliability, and validity. We performed a study on 108 individuals with multiple measurements of BS and CA to estimate intra- and inter-rater reliabilities for both. We suggested BS equivalents of CA measurements and determined validity of BS considering CA the gold standard. Throughout the study, the overall concordance correlation coefficient (OCCC) was chosen as indicator of agreement. BS was slightly more time consuming but better accepted than CA. For CA, OCCCs for intra- and inter-rater reliability were greater than 0.8 for all nine quantities studied. For BS, 9 of 154 quantities showed reliabilities below 0.7. BS proxies for CA measurements showed good agreement (minimum OCCC > 0.77) after offset correction. Thigh length showed higher reliability in BS while upper arm length showed higher reliability in CA. Except for these issues, reliabilities of CA measurements and their BS equivalents were comparable.
PurposeBody surface area is a physiological quantity relevant for many medical applications. In clinical practice, it is determined by empirical formulae. 3D laser-based anthropometry provides an easy and effective way to measure body surface area but is not ubiquitously available. We used data from laser-based anthropometry from a population-based study to assess validity of published and commonly used empirical formulae.MethodsWe performed a large population-based study on adults collecting classical anthropometric measurements and 3D body surface assessments (N = 1435). We determined reliability of the 3D body surface assessment and validity of 18 different empirical formulae proposed in the literature. The performance of these formulae is studied in subsets of sex and BMI. Finally, improvements of parameter settings of formulae and adjustments for sex and BMI were considered.Results3D body surface measurements show excellent intra- and inter-rater reliability of 0.998 (overall concordance correlation coefficient, OCCC was used as measure of agreement). Empirical formulae of Fujimoto and Watanabe, Shuter and Aslani and Sendroy and Cecchini performed best with excellent concordance with OCCC > 0.949 even in subgroups of sex and BMI. Re-parametrization of formulae and adjustment for sex and BMI slightly improved results.ConclusionIn adults, 3D laser-based body surface assessment is a reliable alternative to estimation by empirical formulae. However, there are empirical formulae showing excellent results even in subgroups of sex and BMI with only little room for improvement.Electronic supplementary materialThe online version of this article (doi:10.1007/s00421-016-3525-5) contains supplementary material, which is available to authorized users.
Scanning is faster, requires less intensive staff training and provides more information. It can be used in an epidemiologic setting with children and adolescents but some measurements should be considered with caution due to reduced agreement with conventional anthropometry.
Obesity develops early in childhood and is accompanied by early signs of adipose tissue (AT) dysfunction and metabolic disease in children. In order to analyse the molecular processes during obesity-related AT accumulation in children, we investigated genome-wide expression profiles in AT samples, isolated adipocytes, and stromal vascular fraction (SVF) cells and assessed their relation to obesity as well as biological and functional AT parameters. We detected alterations in gene expression associated with obesity and related parameters, i.e., BMI SDS, adipocyte size, macrophage infiltration, adiponectin, and/or leptin. While differential gene expression in AT and adipocytes shared an enrichment in metabolic pathways and pathways related to extracellular structural organisation, SVF cells showed an overrepresentation in inflammatory pathways. In adipocytes, we found the strongest positive association for epidermal growth factor-like protein 6 (EGFL6) with adipocyte hypertrophy. EGFL6 was also upregulated during in vitro adipocyte differentiation. In children, EGFL6 expression was positively correlated to parameters of AT dysfunction and metabolic disease such as macrophage infiltration into AT, hs-CRP, leptin levels, and HOMA-IR. In conclusion, we provide evidence for early alterations in AT gene expression related to AT dysfunction in children and identified EGFL6 as potentially being involved in processes underlying the pathogenesis of metabolic disease.
To date, gross total resection (GTR) of the contrast-enhancing area of glioblastoma (GB) is the benchmark treatment regarding surgical therapy. However, GB infiltrates beyond those margins, and most tumors recur in close proximity to the initial resection margin. It is unclear whether a supramarginal resection (SMR) enhances progression-free survival (PFS) time without increasing the incidence of postoperative surgical complications. The aim of the present meta-analysis was to investigate SMR with regard to PFS and postoperative surgical complications. We searched for eligible studies comparing SMR techniques with conventional GTR in PubMed, Cochrane Library, Web of Science, and Medline databases. From 3158 initially identified records, 11 articles met the criteria and were included in our meta-analysis. Our results illustrate significantly prolonged PFS time in SMR compared with GTR (HR: 11.16; 95% CI: 3.07–40.52, p = 0.0002). The median PFS of the SMR arm was 8.44 months (95% CI: 5.18–11.70, p < 0.00001) longer than the GTR arm. The rate of postoperative surgical complications (meningitis, intracranial hemorrhage, and CSF leaks) did not differ between the SMR group and the GTR group. SMR resulted in longer median progression-free survival without a negative postoperative surgical risk profile. Multicentric prospective randomized trials with a standardized definition of SMR and analysis of neurologic functioning and health-related quality of life are justified and needed to improve the level of evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.