Eosinophils are predominantly known for their contribution to allergy. Here, we have examined the function and regulation of gastrointestinal eosinophils in the steady-state and during infection with or We find that eosinophils are recruited to sites of infection, directly encounter live bacteria, and activate a signature transcriptional program; this applies also to human gastrointestinal eosinophils in humanized mice. The genetic or anti-IL-5-mediated depletion of eosinophils results in improved control of the infection, increased inflammation, and more pronounced Th1 responses. Eosinophils control Th1 responses via the IFN-γ-dependent up-regulation of PD-L1. Furthermore, we find that the conditional loss of IFN-γR in eosinophils phenocopies the effects of eosinophil depletion. Eosinophils further possess bactericidal properties that require their degranulation and the deployment of extracellular traps. Our results highlight two novel functions of this elusive cell type and link it to gastrointestinal homeostasis and anti-bacterial defense.
The prevalence of allergic asthma and other atopic diseases has reached epidemic proportions in large parts of the developed world. The gradual loss of the human indigenous microbiota has been held responsible for this trend. The bacterial pathogen Helicobacter pylori is a constituent of the normal gastric microbiota whose presence has been inversely linked to allergy and asthma in humans and experimental models. Here we show that oral or i.p. tolerization with H. pylori extract prevents the airway hyperresponsiveness, bronchoalveolar eosinophilia, pulmonary inflammation, and Th2 cytokine production that are hallmarks of allergen-induced asthma in mice. Asthma protection is not conferred by extracts from other enteropathogens and requires a heat-sensitive H. pylori component and the DC-intrinsic production of IL-10. The basic leucine zipper ATF-like 3 (BATF3)-dependent CD103 + CD11b − dendritic cell lineage is enriched in the lungs of protected mice and strictly required for protection. Two H. pylori persistence determinants, the γ-glutamyl-transpeptidase GGT and the vacuolating cytotoxin VacA, are required and sufficient for asthma protection and can be administered in purified form to prevent asthma. In conclusion, we provide preclinical evidence for the concept that the immunomodulatory properties of H. pylori can be exploited for tolerization strategies aiming to prevent allergen-induced asthma.bacterial immunomodulation | allergy and asthma prevention | tolerogenic dendritic cells | bacterial persistence determinants
BACKGROUND The Gram-negative bacterium Helicobacter pylori is a constituent of the human gastric microbiota. Chronic infection with H. pylori causes gastritis and predisposes to gastric carcinoma but has also been inversely linked to various allergic and chronic inflammatory conditions. In particular, large meta-analyses have documented an inverse association between H. pylori infection and the risk of developing ulcerative colitis and Crohn's disease. METHODS We investigated possible protective effects of experimental H. pylori infection and of regular treatment with H. pylori extract in 2 mouse models of colitis and in mouse models of type I diabetes and multiple sclerosis. The mechanism of protection was examined in mouse strains lacking specific innate immune recognition pathways and cytokines. RESULTS We show here that experimental infection with H. pylori and administration of regular doses of H. pylori extract both alleviate the clinical and histopathological features of dextran sodium sulfateinduced chronic colitis and of T-cell transfer-induced colitis. High resolution endoscopy of the protected animals revealed the accumulation of large amounts of colonic mucus upon H. pylori exposure, which could be attributed to transcriptional activation of the mucin 2 gene. The protection against dextran sodium sulfate-induced colitis was dependent on the NLRP3 inflammasome and interleukin-18 signaling. Other autoimmune diseases, i.e., experimental autoimmune encephalomyelitis and type I diabetes, were not controlled by H. pylori. CONCLUSIONS In summary, we propose here that the immunomodulatory activity of an ancient constituent of the gut microbiota, H. pylori, may be exploited for the prevention and/or treatment of inflammatory bowel diseases.
The Gram-negative bacterium Helicobacter pylori is predominantly known for its tight association with peptic ulcer disease and gastric cancer development. However, recent epidemiological and experimental evidence suggests that chronic infection with H. pylori may at the same time be beneficial to the host by conferring protection against gastroesophageal diseases, asthma, other allergic disease manifestations and inflammatory bowel diseases (IBD). In this chapter, we summarize the epidemiological data that are available to date to support or refute a possible inverse correlation of H. pylori infection with various extragastric diseases. We further examine and discuss the experimental evidence, generated mostly in mouse models of allergic diseases and IBD, showing that these disorders fail to develop in the presence of H. pylori. The proposed mechanisms of the protective effects of H. pylori, which appear to involve the induction of regulatory T-cells (Tregs) with highly suppressive activity, are presented and explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.