When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finitesize and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.arXiv:1710.00050v3 [cond-mat.mtrl-sci]
We measure the current vs voltage (I-V) characteristics of a diodelike tunnel
junction consisting of a sharp metallic tip placed at a variable distance d
from a planar collector and emitting electrons via electric-field assisted
emission. All curves collapse onto one single graph when I is plotted as a
function of the single scaling variable Vd^{-\lambda}, d being varied from a
few mm to a few nm, i.e., by about six orders of magnitude. We provide an
argument that finds the exponent {\lambda} within the singular behavior
inherent to the electrostatics of a sharp tip. A simulation of the tunneling
barrier for a realistic tip reproduces both the scaling behavior and the small
but significant deviations from scaling observed experimentally.Comment: 6 pages, 6 figures. Accepted for publication in Physical Review
In this paper, we derive analytically from first principles a generalized Fowler-Nordheim (FN) type equation that takes into account the curvature of a nanoscopic emitter and is generally applicable to any emitter shape provided that the emitter is a good conductor and no field-dependent changes in emitter geometry occur. The traditional FN equation is shown to be a limiting case of our equation in the limit of emitters of large radii of curvature R. Experimental confirmation of the validity of our equation is given by the data of three different groups. Upon applying our equation to experimental FN plots complying with the above limitations, one may deduce (i) R and (ii) standard field emission parameters-e.g. enhancement factor-with better accuracy than by using the FN equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.