The fact that the heritable neurodegenerative disorder Huntington’s Disease (HD) is autosomal dominant means that there is one wild type and one mutant allele in most HD patients. The CAG repeat expansion in the exon 1 of the protein huntingtin (HTTex1) that causes the disease, leads to the formation of HTT fibrils in vitro and vivo. An important question for understanding the molecular mechanism of HD is which role wild type HTT plays for the formation, propagation, and structure of these HTT fibrils. Here we report that fibrils of mutant HTTex1 are able to seed the aggregation of wild type HTTex1 into amyloid fibrils which in turn can seed the fibril formation of mutant HTTex1. Solid-state NMR and EPR data showed that wild type HTTex1 fibrils closely resemble the structure of mutant fibrils, with small differences indicating a less extended fibril core. These data suggest that wild type fibrils can faithfully perpetuate the structure of mutant fibrils in HD. However, wild type HTTex1 monomers have a much higher equilibrium solubility compared to mutant HTTex1 and only a small fraction incorporates into fibrils.
Abstract. Based on a brief account of 1,000 years of river floods and flood management in the Dutch Rhine delta, it is argued that vulnerability to river floods depends on the complex interaction of economics, institutions, politics and, to a limited extent, climate. Response functions and thresholds for climate change impacts should take this complexity into account rather than assuming society to be constant or evolving in a straightforward manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.