Background & Aims Peptic ulcer disease and gastric cancer are most often caused by Helicobacter pylori strains that harbor the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host cells. cagY is an essential gene in the T4SS and has an unusual DNA repeat structure that predicts in-frame insertions and deletions. These cagY recombination events typically lead to a reduction in T4SS function in mouse and primate models. We examined the role of the immune response in cagY-dependent modulation of T4SS function. Methods H pylori T4SS function was assessed by measuring CagA translocation and the capacity to induce interleukin-8 (IL8) in gastric epithelial cells. cagY recombination was determined by changes in PCR restriction fragment-length polymorphisms. T4SS function and cagY in H pylori from C57BL/6 mice were compared to strains recovered from Rag1−/− mice, T and B cell deficient mice, mice with deletion of IFNGR or IL10, and Rag1−/− mice that received adoptive transfer of control or Ifng−/− CD4+ T cells. To assess relevance to humans, T4SS function and cagY recombination were assessed in strains obtained sequentially from a patient after 7.4 years of infection. Results H pylori infection of T-cell deficient and Ifngr1−/− mice, and transfer of CD4+ T cells to Rag1−/− mice, demonstrated that cagY-mediated loss of T4SS function requires a T-helper 1-mediated immune response. Loss of T4SS function and cagY recombination were more pronounced in Il10−/− mice, and in control mice infected with H pylori that expressed a more inflammatory form of cagY. Complementation analysis of H pylori strains isolated from a patient over time demonstrated changes in T4SS function that were dependent on recombination in cagY. Conclusions Analysis of H pylori strains from mice and from a chronically infected patient showed that CagY functions as an immune-sensitive regulator of T4SS function. We propose that this is a bacterial adaptation to maximize persistent infection and transmission to a new host under conditions of a robust inflammatory response.
Antibiotic-producing Streptomyces use the diadenylate cyclase DisA to synthesize the nucleotide second messenger c-di-AMP, but the mechanism for terminating c-di-AMP signaling and the proteins that bind the molecule to effect signal transduction are unknown. Here, we identify the AtaC protein as a c-di-AMP-specific phosphodiesterase that is also conserved in pathogens such as Streptococcus pneumoniae and Mycobacterium tuberculosis. AtaC is monomeric in solution and binds Mn 2+ to specifically hydrolyze c-di-AMP to AMP via the intermediate 5′-pApA. As an effector of c-di-AMP signaling, we characterize the RCK_C domain protein CpeA. c-di-AMP promotes interaction between CpeA and the predicted cation/ proton antiporter, CpeB, linking c-di-AMP signaling to ion homeostasis in Actinobacteria. Hydrolysis of c-di-AMP is critical for normal growth and differentiation in Streptomyces, connecting ionic stress to development. Thus, we present the discovery of two components of c-di-AMP signaling in bacteria and show that precise control of this second messenger is essential for ion balance and coordinated development in Streptomyces.c-di-AMP | Streptomyces | phosphodiesterase | development | osmostress
Streptomyces are our principal source of antibiotics, which they generate concomitant with a complex developmental transition from vegetative hyphae to spores. c-di-GMP acts as a linchpin in this transition by binding and regulating the key developmental regulators, BldD and WhiG. Here we show that c-di-GMP also binds the glycogen-debranching-enzyme, GlgX, uncovering a direct link between c-di-GMP and glycogen metabolism in bacteria. Further, we show c-di-GMP binding is required for GlgX activity. We describe structures of apo and c-di-GMP-bound GlgX and, strikingly, their comparison shows c-di-GMP induces long-range conformational changes, reorganizing the catalytic pocket to an active state. Glycogen is an important glucose storage compound that enables animals to cope with starvation and stress. Our in vivo studies reveal the important biological role of GlgX in Streptomyces glucose availability control. Overall, we identify a function of c-di-GMP in controlling energy storage metabolism in bacteria, which is widespread in Actinobacteria.
All living cells use cyclic nucleotides as second messengers for signal sensing and transduction. Cyclic di-3′,5′-adenosine monophosphate (c-di-AMP) is primarily involved in the control of bacterial and euryarcheal osmoadaptation and is produced by diadenylate cyclases from two molecules of ATP. Specific phosphodiesterases hydrolyze c-di-AMP to the linear phosphoadenylate adenosine 5′-pApA or to AMP. Different methods including high-performance liquid chromatography (HPLC), thinlayer chromatography (TLC) and ion exchange chromatography (IEX) can be used to determine activities of c-di-AMP-synthesizing and degrading enzymes. Here, we describe in detail the TLC and IEX methods adapted for characterization of the diadenylate cyclase DisA and the phosphodiesterase AtaC from Streptomyces venezuelae. TLC allows quick and easy separation of radioactive-labeled substrates and products, while IEX avoids utilization of potentially hazardous radioactive substrates and can be used as a good substitute if an HPLC system is not available. Unlike in TLC assays, samples cannot be analyzed in parallel by using the IEX assay, thus it is more time consuming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.