BackgroundMalaria in Cameroon was previously known to be caused solely by Plasmodium falciparum but today, evidence points to other Plasmodium species including P. vivax, P. ovale and P. malariae. The purpose of this study was to identify the Plasmodium species in clinical samples from children residing in five epidemiological strata of malaria in Cameroon, so as to advise control policies.MethodsOne thousand six hundred nine febrile children (≤15 years) were recruited from five epidemiological strata of malaria including the Sudano-sahelian (SS) strata, the High inland plateau (HIP) strata, the South Cameroonian Equatorial forest (SCEF) strata, the High western plateau (HWP) strata and the Coastal (C) strata. Malaria parasites were detected by Giemsa microscopy (GM) while a multiplex polymerase chain reaction (PCR) was used to identify the Plasmodium species. Statistical analysis performed included the Pearson chi-square test, and statistical significance was set at p < 0.05.ResultsThe PCR-adjusted prevalence of malaria was 17.6%. The detection rate of PCR was higher than GM (p = 0.05). However, GM demonstrated a high sensitivity (85.5%) and specificity (100%) and, overall, a perfectly correlated agreement with PCR (97.5%). The prevalence of malaria was significantly higher in children between 60 and 119 months (p < 0.001) and in Limbe (in the Coastal strata) (p < 0.001). Contrariwise, the prevalence of malaria was not associated with gender (p = 0.239). P. falciparum was identified in all (100%) the cases of malaria; P. ovale, P. vivax, P. malariae and P. knowlesi were all absent. No case of mixed infection was identified.Conclusions P. falciparum was the only species causing clinical malaria in the target population, which is contrary to studies that have reported P. vivax, P. malariae and P. ovale as causing clinical malaria in Cameroon.
BackgroundIn the wake of a decline in global malaria, it is imperative to describe the epidemiology of malaria in a country to inform control policies. The purpose of this study was to describe the epidemiological and clinical profile of paediatric malaria in five epidemiological strata of malaria in Cameroon including: the Sudano-sahelian (SS) strata, the High inland plateau (HIP) strata, the South Cameroonian Equatorial forest (SCEF) strata, the High western plateau (HWP) strata, and the Coastal (C) strata.MethodsThis study involved 1609 febrile children (≤15 years) recruited using reference hospitals in the five epidemiological strata. Baseline characteristics were determined; blood glucose level was measured by a glucometer, malaria parasitaemia was assessed by Giemsa microscopy, and complete blood count was performed using an automated hematology analyser. Severe malaria was assessed and categorized based on WHO criteria.ResultsAn overall prevalence of 15.0% (95% CI: 13.3–16.9) for malaria was observed in this study. Malaria prevalence was significantly higher in children between 60 and 119 months (p < 0.001) and in Limbe (C strata) (p < 0.001). The overall rate of severe malaria (SM) attack in this study was 29.3%; SM was significantly higher in children below 60 months (p < 0.046). Although not significant, the rate of SM was highest in Maroua (SS strata) and lowest in Limbe in the C strata. The main clinical phenotypes of SM were hyperparasitaemia, severe malaria anaemia and impaired consciousness. The majority (73.2%) of SM cases were in group 1 of the WHO classification of severe malaria (i.e. the most severe form). The malaria case-fatality rate was 5.8%; this was higher in Ngaoundere (HIP strata) (p = 0.034).ConclusionIn this study, malaria prevalence decreased steadily northward, from the C strata in the South to the SS strata in the North of Cameroon, meanwhile the mortality rate associated with malaria increased in the same direction. On the contrary, the rate of severe malaria attack was similar across the different epidemiological strata. Immunoepidemiological studies will be required to shed more light on the observed trends.
Background Bartonella bacilliformis is the aetiological agent of Carrión's disease, a biphasic and highly lethal illness formerly restricted to the South American Andes that is now spreading to adjacent areas. Reliable serodiagnostic approaches and vaccines are urgently needed. In this study, we aimed to identify immunodominant proteins of B bacilliformis and to establish novel and reliable serodiagnostic tools. MethodsWe used a reverse vaccinology approach in combination with an analysis of heterologous genomic expression libraries to identify immunodominant proteins, on the basis of the genome sequences of B bacilliformis strains KC583 and KC584. Antigens were screened with serum samples collected from Peruvian patients with B bacilliformis infections and from German healthy blood donors without history of travel to South America. We further analysed immunoreactive proteins of B bacilliformis with immunoblotting and line blots. We used selected target proteins to develop a diagnostic ELISA. To assess the performance of this ELISA, we did receiver operating characteristic analyses to assess the area under the curve, cutoff values, sensitivities, and specificities with 95% CIs. FindingsWe used serum samples obtained between Dec 23, 1990, and May 5, 2018, from 26 Peruvian patients with B bacilliformis infections and serum samples taken between Aug 28 and Aug 31, 2020, from 96 healthy German blood donors. 21 potentially immunodominant proteins were identified and recombinantly expressed, and their reactivity was assessed with immunoblotting and line blots. Of these 21 antigens, 14 were found to be immunoreactive. By using serum samples of Peruvian patients with Carrión's disease and of healthy German blood donors, we identified three antigens (porin B, autotransporter E, and hypothetical protein B) as suitable immunodominant antigens, and we applied them in a diagnostic ELISA using two different antigen combinations (porin B plus autotransporter E and porin B plus autotransporter E plus hypothetical protein B). For the combination of porin B and autotransporter E, with optical density measured at 450 nm (OD 450 ) cutoff value of 0•29, sensitivity was 80•8% (95% CI 60•7-93•5) and specificity was 94•8% (88•3-98•3) for all Peruvian patient samples. For a combination of porin B, autotransporter E, and hypothetical protein B, with an OD 450 cutoff of 0•34, sensitivity was 76•9% (56•4-91•0) and specificity was 93•8% (86•9-97•7) for all Peruvian patient samples. Interpretation This novel ELISA could represent a useful serodiagnostic tool for future epidemiological studies of B bacilliformis in endemic areas. Additionally, the immunodominant antigens we have identified could provide a first basis for future vaccine development to prevent the highly lethal Carrión's disease. Funding DRUID (Novel Drug Targets against Poverty-Related and Neglected Tropical Infectious Diseases) Initiative and Robert Koch Institute.
Bartonella henselae causes cat scratch disease and several other clinical entities. Infections with B. henselae are frequently occurring; however, the infection is only rarely diagnosed, mainly due to a lack of knowledge in the medical community. Microscopic immunofluorescence assays (IFA) are widely used for the serodiagnosis of B. henselae infections but are laborious and time-consuming, and interpretation is subjective. An easy and reliable method for the serological diagnosis of B. henselae infections is needed to overcome the shortcomings of the current IFA. Here, we report the development of an ELISA detecting human anti-B. henselae antibodies from serum samples. By separating the water-insoluble fraction of B. henselae Houston-1 via ion-exchange chromatography, 16 subfractions were generated and tested for immunoreactivity via line blotting. One particular fraction (fraction 24) was selected and spotted on ELISA plates using an industrial production platform. By use of well-characterized human sera from the strictly quality-controlled serum library of the German National Consiliary Laboratory for Bartonella infections, the sensitivity of this ELISA was 100% for PCR-proven infections and 76% for clinically suspected infections at a specificity of 93%. This ELISA is therefore a reliable high-throughput method allowing the serodiagnosis of B. henselae infections.
Using the optical transduction properties of onedimensional photonic crystal slabs is a promising approach for label-free biosensing in the field of flexible and wearable biosensing. In this work we demonstrate the fabrication of flexible photonic crystal slabs (f-PCS) via an exfoliation method from rigid photonic crystal slabs. We investigate the processing effect on the optical properties and show that the optical resonances are maintained, but affected. The quality factor changes from 50 to 31 for the TE mode and from 187 to 136 for the TM mode after the process. We demonstrate use of f-PCS for refractive index sensing and achieve a limit of detection (LOD) of 3.6 E-4 refractive index units (RIU). Furthermore, we introduce vapor-phase functionalization of the f-PCS and show first results of biosensing of antibodies from diluted feline serum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.