In this paper, we present a constant temperature mashing procedure where grist made of Pilsner malt is mashed-in directly in the temperature regime of alpha-amylase activity, thus omitting all conventional steps, followed by constant temperature mashing at 72 °C. The aim was to investigate an alternative mashing procedure for the production of alcohol-reduced beers. The mashing proceeds with a rapid buildup of sugars and is completed after 120 min at the latest, giving an iodine normal and clear wort. However, the distribution of the different sugars in the worts is strongly altered, in comparison to a more classical mashing procedure. The free amino nitrogen (FAN) concentration is sufficient for vivid fermentation with the bottom fermenting yeast Saccharomyces pastorianus TUM 34/70. The lag phase and initial fermentation performance of this yeast strain are comparable for conventionally and isothermally (72 °C) mashed wort. Under the given conditions the fermentation of the isothermally (72 °C) made wort is finished after 6 days whereas a conventional wort needs 4–5 days more to be completed. The alcohol concentration is remarkably reduced by isothermal mashing leading to roughly 3.4 vol.-% with an original gravity of 11°P whereas with a conventional mashing procedure 4.4 vol.-% are obtained for the same original gravity. In both cases the concentrations of the fermentation by-products are comparable. A preliminary comparison of taste and foam stability did not show striking differences. Constant temperature mashing at 72 °C is a simple way to reduce the alcohol content of beer enriching it at the same time with non-fermentable sugars.
The basic step in beer production is mashing, during which insoluble starch chains, and to a lesser extent cell walls and proteins are broken down by enzymatic hydrolysis. Since the beginning of the modern brewing process there have been empirical studies into the optimum effective temperatures of the corresponding enzymes, and mashing has been carried out accordingly. The resulting resting temperatures of proteolysis, cytolysis and amylolysis with the maltose and saccharification rest, are now rarely changed, only being adapted to the properties of the raw materials used to a limited extent. New varieties of barley and other raw materials used in breweries, as well as modern processes in malting plants, ensure better enzyme potential and optimized malt gelatinization temperatures. The aim of this paper is to determine enzyme activity in barley malt during mashing. For this purpose, isothermal mashing was used, i.e., a mashing process with a constant resting temperature over the entire mashing period. The obtained worts were analyzed for the attributes of extract, final attenuation, β-glucan, total nitrogen, free amino nitrogen, viscosity, and pH as well as sugar composition and individual amino acids. The change in these attributes indicates the enzyme activity of the malt.
Saccharomyces pastorianus, which is responsible for the production of bottom-fermented lager beer, is a hybrid species that arose from the mating of the top-fermenting ale yeast Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus around the start of the 17th century. Based on detailed analysis of Central European brewing records, we propose that the critical event for the hybridization was the introduction of top-fermenting S. cerevisiae into an environment where S. eubayanus was present, rather than the other way around. Bottom fermentation in parts of Bavaria preceded the proposed hybridization date by a couple of hundred years and we suggest that this was carried out by mixtures of yeasts, which may have included S. eubayanus. A plausible case can be made that the S. cerevisiae parent came either from the Schwarzach wheat brewery or the city of Einbeck, and the formation of S. pastorianus happened in the Munich Hofbräuhaus between 1602 and 1615 when both wheat beer and lager were brewed contemporaneously. We also describe how the distribution of strains from the Munich Spaten brewery, and the development by Hansen and Linder of methods for producing pure starter cultures, facilitated the global spread of the Bavarian S. pastorianus lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.