In this article we consider the post-retirement phase optimization problem for a specific pension product in Germany that comes without guarantees. The continuous-time optimization problem is defined consisting of two specialties: first, we have a product-specific pension adjustment mechanism based on a certain capital coverage ratio which stipulates compulsory pension adjustments if the pension fund is underfunded or significantly overfunded. Second, due to the retiree’s fear of and aversion against pension reductions, we introduce a total wealth distribution to an investment portfolio and a buffer portfolio to lower the probability of future potential pension shortenings. The target functional in the optimization, that is to be maximized, is the client’s expected accumulated utility from the stochastic future pension cash flows. The optimization outcome is the optimal investment strategy in the proposed model. Due to the inherent complexity of the continuous-time framework, the discrete-time version of the optimization problem is considered and solved via the Bellman principle. In addition, for computational reasons, a policy function iteration algorithm is introduced to find a stationary solution to the problem in a computationally efficient and elegant fashion. A numerical case study on optimization and simulation completes the work with highlighting the benefits of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.