Grazing incidence X-ray diffraction is used to find the thin film morphology of an extended molecule with an irregular alternating fluorene-thiophene structure, which is used to obtain linearly polarized electroluminescence and the photovoltaic effect. The material has a room temperature nematic glassy phase and is uniaxially aligned in the plane of the film using photoalignment techniques. Two distinct intermolecular separations of 0.45 and 1.5 nm are identified showing that the molecules are lamellar. The lamellae stack with only local order and the two short axes of the lamellae have no preferred orientation at the surface or bulk of the film. Neighboring molecules show a wide range of longitudinal displacements along the axis of the director, as expected for a nematic liquid crystal with no positional order. There is, however, a dominant feature corresponding to a longitudinal offset of 0.51 nm. Unlike some other fluorene-containing semiconductors where microphase separation of the side chains inhibits close packing of neighboring molecules, the lamellar structure and 0.45 intermolecular spacing found here allows pi-pi intermolecular interactions for efficient carrier transport. We obtain a room temperature hole mobility up to 3.4 x 10-3 cm2 V-1 s-1 using a time-of-flight technique.
The synthesis is reported of new liquid crystals incorporating the 1,4-disubstituted bicyclo[2.2.2]octane ring and a series of substituents in a terminal position on the molecular core. The nature of the terminal substituent is varied from apolar with a small dipole moment to polar with a strong dipole moment. The angle of the dipole moment with respect to the molecular axis is also varied. An updated order of terminal group efficiency for substituents in a terminal position for the nematic phase is provided. The bicyclo[2.2.2]octane ring shields halogen substituents in a lateral position on phenyl rings attached to the bicyclooctane ring to a small degree and reduces the steric efects of these substituents, giving rise to high relative nematic-isotropic transition temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.