This critical review provides an overview on the formation of pi-stacks of functional dyes in solution, aiming to acquaint young researchers with this topical research field and to stimulate further advance in supramolecular dye chemistry. Different mathematical models that have been proposed and applied for the description of aggregation equilibria of pi-systems in solution are discussed. The factors that have significant impact on the structural features of aggregates and the thermodynamics of pi-pi stacking such as electrostatic interactions, size and geometry of the dye molecules are covered in this review. A comparison of the binding strength is made for different classes of functional pi-conjugated systems, from simple benzene to more extended polycyclic hydrocarbon molecules, including triphenylenes and hexabenzocoronenes, heteroaromatic porphyrins and phthalocyanines, quadrupolar naphthalene and perylene bisimides, dipolar or even zwitterionic merocyanines and squaraines, and some macrocyclic dyes. Solvent effects on binding constants are analysed by linear free energy relationships with various solvent polarity scales (98 references with multiple entries).
The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large‐scale production.
An inversion of the exciton chirality and structural changes upon transformation from kinetic to thermodynamic assembly are features of helical bis(merocyanine) dye nanorods (see picture), as elucidated by time‐dependent circular dichroism (CD) spectroscopy and atomic force microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.