The CX3C chemokine fractalkine (CX3CL1) exists as a membrane-expressed protein promoting cell-cell adhesion and as a soluble molecule inducing chemotaxis. Transmembrane CX3CL1 is converted into its soluble form by defined proteolytic cleavage (shedding), which can be enhanced by stimulation with phorbol-12-myristate-13-acetate (PMA). PMA-induced CX3CL1 shedding has been shown to involve the tumor necrosis factor-␣-converting enzyme (TACE), whereas the constitutive cleavage in unstimulated cells remains elusive. Here we demonstrate a role of the closely related disintegrin-like metalloproteinase 10 (ADAM10) in the constitutive CX3CL1 cleavage. The hydroxamate GW280264X, capable of blocking TACE as well as ADAM10, proved to be an effective inhibitor of the constitutive and the PMA-inducible CX3CL1 cleavage in CX3CL1-expressing ECV-304 cells (CX3CL1-ECV-304), whereas GI254023X, preferentially blocking ADAM10 but not TACE, reduced the constitutive cleavage only. Overexpression of ADAM10 in COS-7 cells enhanced constitutive cleavage of CX3CL1 and, more importantly, in murine fibroblasts deficient of ADAM10 constitutive CX3CL1 cleavage was markedly reduced. Thus, ADAM10 contributes to the constitutive shedding of CX3CL1 in un- IntroductionLeukocyte recruitment to inflammatory sites involves a sequence of adhesive events that are mediated by different classes of adhesion molecules expressed on the endothelium and the leukocytes. 1 Whereas adhesion molecules of the selectin family usually contribute to the rolling of leukocytes under flow, members of the integrin family are involved in establishing a stable shear-resistant cell adhesion. Chemokines are thought to play a role in modulating cell adhesion by inducing shedding of L-selectin and by increasing functional integrins on the leukocyte surface. Thus, besides acting as chemoattractants in the tissue, chemokines can promote the transition from an early to a late adhesion type in the course of leukocyte recruitment.Within the chemokine family a transmembrane molecule termed CX3C chemokine ligand 1 (CX3CL1), or fractalkine, has been identified that by itself induces adhesion. 2 CX3CL1 is encoded as a 95-kDa multidomain molecule consisting of a chemokine domain linked to a transmembrane domain via a mucin-rich stalk. The chemokine is expressed on endothelial cells, 2 epithelial cells, 3,4 smooth muscle cells, 5,6 dendritic cells, 7,8 neurons, 9,10 and macrophages. 11 In vitro, CX3CL1 induces cell adhesion by interaction with its receptor CX3CR1 expressed on monocytes, T cells, mast cells, and natural killer cells. 2,[12][13][14] This adhesion does not require signaling of the receptor, is resistant to physiologic shear flow, and is independent of extracellular calcium. 2,15,16 Besides its activity as an adhesion molecule, CX3CL1 can be cleaved from the cell membrane to produce a soluble 80-kDa molecule that induces chemotaxis of CX3CR1-expressing leukocytes. 2 In vivo, upregulation of CX3CL1 has been found in atherosclerotic blood vessels, 6,11 rejected transplants, 1...
E-cadherin controls a wide array of cellular behaviors, including cell-cell adhesion, differentiation, and tissue development. We show here that E-cadherin is cleaved specifically by ADAM (a disintegrin and metalloprotease) 10 in its ectodomain. Analysis of ADAM10-deficient fibroblasts, inhibitor studies, and RNA interference-mediated down-regulation of ADAM10 demonstrated that ADAM10 is responsible not only for the constitutive shedding but also for the regulated shedding of this adhesion molecule in fibroblasts and keratinocytes. ADAM10-mediated E-cadherin shedding affects epithelial cell-cell adhesion as well as cell migration. Furthermore, the shedding of E-cadherin by ADAM10 modulates the -catenin subcellular localization and downstream signaling. ADAM10 overexpression in epithelial cells increased the expression of the -catenin downstream gene cyclin D1 dose-dependently and enhanced cell proliferation. In ADAM10-deficient mouse embryos, the C-terminal E-cadherin fragment is not generated, and the full-length protein accumulates, highlighting the in vivo relevance for ADAM10 in E-cadherin shedding. Our data strongly suggest that this protease constitutes a major regulatory element for the multiple functions of E-cadherin under physiological as well as pathological conditions. ADAM ͉ cadherin ͉ metalloproteinases ͉ shedding
The novel CXC-chemokine ligand 16 (CXCL16) functions as transmembrane adhesion molecule on the surface of APCs and as a soluble chemoattractant for activated T cells. In this study, we elucidate the mechanism responsible for the conversion of the transmembrane molecule into a soluble chemokine and provide evidence for the expression and shedding of CXCL16 by fibroblasts and vascular cells. By transfection of human and murine CXCL16 in different cell lines, we show that soluble CXCL16 is constitutively generated by proteolytic cleavage of transmembrane CXCL16 resulting in reduced surface expression of the transmembrane molecule. Inhibition experiments with selective hydroxamate inhibitors against the disintegrin-like metalloproteinases a disintegrin and metalloproteinase domain (ADAM)10 and ADAM17 suggest that ADAM10, but not ADAM17, is involved in constitutive CXCL16 cleavage. In addition, the constitutive cleavage of transfected human CXCL16 was markedly reduced in embryonic fibroblasts generated from ADAM10-deficient mice. By induction of murine CXCL16 in ADAM10-deficient fibroblasts with IFN-γ and TNF-α, we show that endogenous ADAM10 is indeed involved in the release of endogenous CXCL16. Finally, the shedding of endogenous CXCL16 could be reconstituted by retransfection of ADAM10-deficient cells with ADAM10. Analyzing the expression and release of CXCXL16 by cultured vascular cells, we found that IFN-γ and TNF-α synergize to induce CXCL16 mRNA. The constitutive shedding of CXCL16 from the endothelial cell surface is blocked by inhibitors of ADAM10 and is independent of additional inhibition of ADAM17. Hence, during inflammation in the vasculature, ADAM10 may act as a CXCL16 sheddase and thereby finely control the expression and function of CXCL16 in the inflamed tissue.
Cadherins are critically involved in tissue development and tissue homeostasis. We demonstrate here that neuronal cadherin (N-cadherin) is cleaved specifically by the disintegrin and metalloproteinase ADAM10 in its ectodomain. ADAM10 is not only responsible for the constitutive, but also for the regulated, shedding of this adhesion molecule in fibroblasts and neuronal cells directly regulating the overall levels of N-cadherin expression at the cell surface. The ADAM10-induced N-cadherin cleavage resulted in changes in the adhesive behaviour of cells and also in a dramatic redistribution of b-catenin from the cell surface to the cytoplasmic pool, thereby influencing the expression of b-catenin target genes. Our data therefore demonstrate a crucial role of ADAM10 in the regulation of cell-cell adhesion and on b-catenin signalling, leading to the conclusion that this protease constitutes a central switch in the signalling pathway from N-cadherin at the cell surface to b-catenin/LEF-1-regulated gene expression in the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.