In this paper, we present a review of deterministic software for solving convex MINLP problems as well as a comprehensive comparison of a large selection of commonly available solvers. As a test set, we have used all MINLP instances classified as convex in the problem library MINLPLib, resulting in a test set of 335 convex MINLP instances. A summary of the most common methods for solving convex MINLP problems is given to better highlight the differences between the solvers. To show how the solvers perform on problems with different properties, we have divided the test set into subsets based on the continuous relaxation gap, the degree of nonlinearity, and the relative number of discrete variables. The results also provide guidelines on how well suited a specific solver or method is for particular types of MINLP problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.