Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the ‘Immunoscore’ into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).
Background-Cancer immunotherapy involving NK-cell infusions and administration of therapeutic agents modulating the susceptibility of tumors to NK-cell lysis has been recently proposed. Here we provide a method to expand highly cytotoxic clinical grade NK cells in vitro for adoptive transfer following bortezomib treatment in patients with advanced malignancies.
Purpose: Increased frequencies of myeloid-derived suppressor cells (MDSC) correlate with poor prognosis in patients with cancers. Tumor-derived prostaglandin-E2 (PGE2) plays an important role in inducing MDSCs. However, the detailed mechanisms of this induction remain unknown. To develop targeted therapies for MDSCs, we sought to investigate the molecular basis of PGE2-regulated accumulation of MDSCs and their functional consequence on natural killer (NK) cell activity.Experimental Design: The effects of PGE2 in inducing phenotypic, signaling, and functional alternations on monocytes were analyzed in vitro. Suppression of NK-cell activity by PGE2-treated monocytes was compared with that of freshly isolated CD14
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.