With the emergence of Industry 4.0, maintenance is considered to be a specific area of action that is needed to successfully sustain a competitive advantage. For instance, predictive maintenance will be central for asset utilization, service, and after-sales in realizing Industry 4.0. Moreover, artificial intelligence (AI) is also central for Industry 4.0, and offers data-driven methods. The aim of this article is to develop a new maintenance model called deep digital maintenance (DDM). With the support of theoretical foundations in cyber-physical systems (CPS) and maintenance, a concept for DDM is proposed. In this paper, the planning module of DDM is investigated in more detail with realistic industrial data from earlier case studies. It is expected that this planning module will enable integrated planning (IPL) where maintenance and production planning can be more integrated. The result of the testing shows that both the remaining useful life (RUL) and the expected profit loss indicator (PLI) of ignoring the failure can be calculated for the planning module. The article concludes that further research is needed in testing the accuracy of RUL, classifying PLI for different failure modes, and testing of other DDM modules with industrial case studies.
Abstract-This paper is focused on how principles from Industry 4.0 in manufacturing can be used in operation and maintenance of subsea production systems. The primary purpose and goal of the paper is to investigate the application of Smart Maintenance to achieve high level of safety, availability and profit in operation and maintenance of subsea production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.