Cryopreservation of a core collection of 444 elm (Ulmus spp.) clones in liquid nitrogen was carried out by two laboratories participating in a European project of conservation of elm genetic resources. Plant material, collected in nine European countries, represented a large sample of the genetic diversity within three European elm species and their hybrids. The cryopreservation technique used in both laboratories involved the stepwise freezing of cryotubes containing dormant buds. Comparisons with fresh buds showed that the cryopreservation treatment had no negative effect on the viability and regrowth potential of frozen buds. Tests on a random sample of 26 clones showed that direct regrowth of cryopreserved buds (i.e., through propagation by microcuttings) of Ulmus minor and Ulmus laevis was possible; conversely, Ulmus glabra could only be regrown through micrografting. Most thawed explants from all 26 clones survived through the whole cultivation phase and were successfully transferred to the field. A calculation of costs indicates that cryopreservation of elm buds is economically competitive to field clonal archives.
Various factors were found to influence the in vitro induction and elongation of adventitious roots from walnut shoot microcuttings. Diverse walnut genotypes (Juglans regia,J. nigra × J. regia hybrids) and selected elite J. regia clones were micropropagated throughout the establishment of in vitro shoot-tip cultures. New evidence is presented here that demonstrates the importance of the genotype and juvenility of the plant material on the in vitro rooting ability. Selection of the best adapted genotypes to multiplication and rooting, and rejuvenation of mature clones through repetitive subcultures or micrografting were examined. Adult J. regia clones were rejuvenated through subsequent subcultures and their rooting was consequently improved. The same results were not accomplished by micrografting on juvenile shoots. A differential response to auxin type and concentration was observed for Juglans regia or J. nigra × J. regia clones. A short prerooting culture in multiplication medium, lowering the sucrose concentration in the root elongation medium and increasing the atmospheric carbon dioxide during the root elongation phase affected the number of shoots forming roots as well as the quality of plantlets and roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.