Laser-based powder bed fusion of metals (PBF-LB/M) is an emerging technology with enormous potential for the fabrication of highly complex products due to the layer-wise fabrication process. Low-alloyed steels have recently gained interest due to their wide potential range of applications. However, the correlation between the processing strategy and the material properties remains mostly unclear. The process-inherent high cooling rates support the assumption that a very fine martensitic microstructure is formed. Therefore, the microstructure formation was studied by means of scanning electron microscopy, hardness measurements, and an analysis of the tempering stability. It could be shown that additively manufactured Bainidur AM samples possess a bainitic microstructure despite the high process-specific cooling rates in PBF-LB/M. This bainitic microstructure is characterized by an excellent tempering stability up to temperatures as high as 600 °C. In contrast to this, additively manufactured and martensitic-hardened specimens are characterized by a higher initial hardness but a significantly reduced tempering stability. This shows the potential of manufacturing products from Bainidur AM for high-temperature applications without the necessity of a post-process heat treatment for achieving the desired bainitic microstructure.
Low‐alloyed steels are used for a variety of different applications like bearings or gears. Additive manufacturing technologies like directed energy deposition (DED‐LB/M) allow for a fast and close‐to‐contour fabrication of sophisticated products without excessive waste of material. However, the DED‐LB/M process cannot be considered as state‐of‐the‐art for this group of materials. This study presents findings on the material properties of the additively manufactured low‐alloyed steel Bainidur AM by means of DED‐LB/M. This includes studies on the mechanical properties (hardness, compression strength) as well as the microstructural properties (scanning electron microscopy [SEM]). The microstructure in the as‐built state appears like a bainitic–martensitic one with shares of retained austenite which is not fully transformed during cooling. As a differentiation is barely possible from the SEM images, a plethora of investigations is further used to assess the microstructure. As‐built samples possess a good combination of ductility and hardness. Furthermore, the specimens are characterized by a good tempering stability up to 600 °C. This tempering stability is characterized by a homogeneous hardness of around 400 HV1 for all temperatures. In contrast, the conventionally hardened specimens show a drop‐off in material hardness, further indicating the excellent material properties of additively manufactured Bainidur AM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.