Two structurally-unrelated small molecule chemotypes, represented by compounds PAV-617 and PAV-951, with antiviral activity in cell culture against monkeypox virus (MPXV) and human immunodeficiency virus (HIV) respectively, were studied for anti-cancer efficacy. Each exhibited apparent pan-cancer cytotoxicity, reasonable pharmacokinetics, and non-toxicity in mice at active concentrations. Anti-tumor properties of each compound were validated in mouse xenografts against A549 human lung cancer. The targets of these compounds are unconventional: each binds to a different transient, energy-dependent multi-protein complex containing the protein KAP-1(TRIM28), an allosteric modulator known to broadly regulate mechanisms underlying viral and nonviral disease states including cancer. Treatment with these compounds alters the target multi-protein complexes in a manner consistent with allosteric modulation as their mechanism of action. These compounds appear to remove a block, crucial for cancer survival and progression, on the homeostatic linkage of uncontrolled cellular proliferation to apoptosis. These compounds may provide starting points for development of next-generation non-toxic, cancer therapeutics.
Herpes virus infections are endemic and ubiquitous. While only rarely leading to overt encephalitis, subchronic or latent infections have been associated to a variety of conditions, including Alzheimer's disease (AD). The cellular consequences of herpes virus infection are determined by the host proteins recruited during virus replication and assembly. Identifying such virus-recruited host proteins therefore allows the interrogation fundamental cellular events leading to associated "sporadic" diseases. A host protein-targeted small molecule drug highly active against herpes simplex virus 1 (HSV-1) infection in human brain organoids and cell lines was identified to interact with macrophage migration inhibitory factor (MIF) where it acted by intercalating between MIF units within a trimer, as determined by nuclear magnetic resonance (NMR). MIF knockout cells showed a decreased viral antigen/titer ratio corroborating its role in virus assembly. From post-mortem brain homogenates of patients with Braak 6-staged AD the small molecule lead compound specifically eluted a MIF subpopulation that correlated with the oxidized conformer of MIF (oxMIF). HSV-1 led to an increase in tau phosphorylation at distinct residues, and the lead compound decreased tau phosphorylation in recombinant cell lines expressing mutant tau and in neuron-differentiated iPSCs also in the absence of HSV-1 infection. We conclude that MIF is a cellular host factor involved in HSV-1 replication and a drug target with antiviral efficacy. At the same time, MIF also plays a role in tau phosphorylation and is enriched in an oxidized conformation in brains of AD patients. MIF thus presents as a molecular link connecting HSV-1 infection and cellular pathology characteristic of neurodegenerative diseases involving aberrant tau phosphorylation.
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with a complex, multifactorial pathophysiology, most commonly manifest as loss of motor neurons. We introduce a new mechanism of ALS pathogenesis via a novel drug-like small molecule series that targets protein disulfide isomerase (PDI) within a previously unappreciated transient and energy-dependent multi-protein complex. This novel drug was found to have activity in cellular models for both familial and sporadic ALS, as well as in transgenic worms, flies, and mice bearing a diversity of human genes with ALS-associated mutations. These compounds were initially identified as modulators of human immunodeficiency virus (HIV) capsid assembly in cell-free protein synthesis and assembly (CFPSA) systems, with demonstrated antiviral activity in cell culture. Their advancement as ALS-therapeutics, and the subsequent separation of activity against HIV and ALS in chemical subseries through structure-activity-relationship optimization, may provide insights into the molecular mechanisms governing pathophysiology of disordered homeostasis relevant to ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.