The stability of the financial system is associated with systemic risk factors such as the concurrent default of numerous small obligors. Hence it is of utmost importance to study the mutual dependence of losses for different creditors in the case of large, overlapping credit portfolios. We analytically calculate the multivariate joint loss distribution of several credit portfolios on a non-stationary market. To take fluctuating asset correlations into account we use an random matrix approach which preserves, as a much appreciated side effect, analytical tractability and drastically reduces the number of parameters. We show that for two disjoint credit portfolios diversification does not work in a correlated market. Additionally we find large concurrent portfolio losses to be rather likely. We show that significant correlations of the losses emerge not only for large portfolios with thousands of credit contracts but also for small portfolios consisting of a few credit contracts only. Furthermore we include subordination levels, which were established in collateralized debt obligations to protect the more senior tranches from high losses. We analytically corroborate the observation that an extreme loss of the subordinated creditor is likely to also yield a large loss of the senior creditor. * andreas.muehlbacher@uni-due.de arXiv:1706.09809v1 [q-fin.RM]
We review recent progress in modeling credit risk for correlated assets. We employ a new interpretation of the Wishart model for random correlation matrices to model non-stationary effects. We then use the Merton model in which default events and losses are derived from the asset values at maturity. To estimate the time development of the asset values, the stock prices are used, the correlations of which have a strong impact on the loss distribution, particularly on its tails. These correlations are non-stationary, which also influences the tails. We account for the asset fluctuations by averaging over an ensemble of random matrices that models the truly existing set of measured correlation matrices. As a most welcome side effect, this approach drastically reduces the parameter dependence of the loss distribution, allowing us to obtain very explicit results, which show quantitatively that the heavy tails prevail over diversification benefits even for small correlations. We calibrate our random matrix model with market data and show how it is capable of grasping different market situations. Furthermore, we present numerical simulations for concurrent portfolio risks, i.e., for the joint probability densities of losses for two portfolios. For the convenience of the reader, we give an introduction to the Wishart random matrix model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.