We present an approach for hybrid systems that combines the advantages of component-based modeling (e.g., reduced model complexity) with the advantages of formal verification (e.g., guaranteed contract compliance). Component-based modeling can be used to split large models into multiple component models with local responsibilities to reduce modeling complexity. Yet, this only helps the analysis if verification proceeds one component at a time. In order to benefit from the decomposition of a system into components for both modeling and verification purposes, we prove that the safety of compatible components implies safety of the composed system. We implement our composition theorem as a tactic in the KeYmaera X theorem prover, allowing automatic generation of a KeYmaera X proof for the composite system from proofs for the components without soundness-critical changes to KeYmaera X. Our approach supports component contracts (i.e., input assumptions and output guarantees for each component) that characterize the magnitude and rate of change of values exchanged between components. These contracts can take into account what has changed between two components in a given amount of time since the last exchange of information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.