Statistics denoting the numbers of success runs of length exactly equal and at least equal to a fixed length, as well as the sum of the lengths of success runs of length greater than or equal to a specific length, are considered. They are defined on both linearly and circularly ordered binary sequences, derived according to the Pólya-Eggenberger urn model. A waiting time associated with the sum of lengths statistic in linear sequences is also examined. Exact marginal and joint probability distribution functions are obtained in terms of binomial coefficients by a simple unified combinatorial approach. Mean values are also derived in closed form. Computationally tractable formulae for conditional distributions, given the number of successes in the sequence, useful in nonparametric tests of randomness, are provided. The distribution of the length of the longest success run and the reliability of certain consecutive systems are deduced using specific probabilities of the studied statistics. Numerical examples are given to illustrate the theoretical results.
Succession quota, sooner and later problems, Bernoulli trials, binary sequence of order k , probability distribution function, probability generating function, longest run,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.