Partitioning of chromatids during mitosis requires that chromosome compaction and spindle length scale appropriately with each other. However, it is not clear whether chromosome condensation and spindle elongation are linked. Here, we find that yeast cells could cope with a 45% increase in the length of their longest chromosome arm by increasing its condensation. The spindle midzone, aurora/Ipl1 activity, and Ser10 of histone H3 mediated this response. Thus, the anaphase spindle may function as a ruler to adapt the condensation of chromatids, promoting their segregation regardless of chromosome or spindle length.
Background: Actinobacillus pleuropneumoniae N-glycosyltransferase is a cytoplasmic glycosyltransferase catalyzing N-glycosylation of polypeptides. Results: In depth analysis of a reconstituted A. pleuropneumoniae glycosylation system in Escherichia coli showed a surprisingly relaxed peptide substrate specificity of N-glycosyltransferase. Conclusion: N-Glycosyltransferase constitutes a general glycosylation system with a preference for autotransporters. Significance: Our study could provide the basis for a novel route for the engineering of N-glycoproteins in bacteria.
Akkermansia muciniphila is a mucin-degrading bacterium commonly found in the human gut that promotes a beneficial effect on health, likely based on the regulation of mucus thickness and gut barrier integrity, but also on the modulation of the immune system. In this work, we focus in OgpA from A. muciniphila, an O-glycopeptidase that exclusively hydrolyzes the peptide bond N-terminal to serine or threonine residues substituted with an O-glycan. We determine the high-resolution X-ray crystal structures of the unliganded form of OgpA, the complex with the glycodrosocin O-glycopeptide substrate and its product, providing a comprehensive set of snapshots of the enzyme along the catalytic cycle. In combination with O-glycopeptide chemistry, enzyme kinetics, and computational methods we unveil the molecular mechanism of O-glycan recognition and specificity for OgpA. The data also contribute to understanding how A. muciniphila processes mucins in the gut, as well as analysis of post-translational O-glycosylation events in proteins.
Background: N-Glycosyltransferases represent a novel class of N-glycosylation-catalyzing enzymes. Results: A quantitative activity assay allowed us to determine substrate specificities of N-glycosyltransferase. Conclusion: N-Glycosyltransferase exhibits a relaxed sugar substrate specificity and a peptide specificity strikingly similar to that of oligosaccharyltransferase. Significance: This study highlights the convergent evolution of two N-glycosylation systems and might lay the basis for a novel route for glycoengineering in bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.