In order to help meet the needs of automotive original equipment manufacturers and their suppliers for a cost-effective, robust, reliable polymer-metal-hybrid (PMH) technology which can be used for the manufacturing of load-bearing body-in-white (BIW) components and which is compatible with the current BIW manufacturing process chain, a new approach, the so-called direct-adhesion PMH technology, was recently proposed (Grujicic et al., J. Mater. Process. Technol., 2008, 195, p 282-298). Within this approach, the necessary level of polymer-to-metal mechanical interconnectivity is attained through direct adhesion and mechanical interlocking. In the present work, a new concept for mechanical interlocking between the metal and plastics is proposed and analyzed computationally. The approach utilizes some of the ideas used in the spot-clinching joining process and is appropriately named clinch-lock PMH technology. To assess the potential of the clinch-lock approach for providing the required level of metal/polymer mechanical interlocking, a set of finite-element based sheet-metal forming, injection molding and structural mechanics analyses was carried out. The results obtained show that stiffness and buckling resistance levels can be attained which are comparable with those observed in the competing injection overmolding PMH process but with an $3% lower weight (of the polymer subcomponent) and without the need for holes and for overmolding of the free edges of the metal stamping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.