Fungalysins from several phytopathogenic fungi have been shown to be involved in cleavage of plant chitinases. While fungal chitinases are responsible for cell wall remodeling during growth and morphogenesis, plant chitinases are important components of immunity. This study describes a dual function of the Ustilago maydis fungalysin UmFly1 in modulation of both plant and fungal chitinases. Genetic, biochemical and microscopic experiments were performed to elucidate the in vitro and in planta functions of U. maydis UmFly1. U. maydis ∆umfly1 mutants show significantly reduced virulence, which coincides with reduced cleavage of the maize chitinase ZmChiA within its chitin-binding domain. Moreover, deletion of umfly1 affected the cell separation of haploid U. maydis sporidia. This phenotype is associated with posttranslational activation of the endogenous chitinase UmCts1. Genetic complementation of the ∆umfly1 mutant with a homologous gene from closely related, but nonpathogenic, yeast fully rescued the cell separation defect in vitro, but it could not recover the ∆umfly1 defect in virulence and cleavage of the maize chitinase. We report on the dual function of the secreted fungalysin UmFly1. We hypothesize that co-evolution of U. maydis with its host plant extended the endogenous function of UmFly1 towards the modulation of plant chitinase activity to promote infection.
We review methods enabling proteome-wide characterization of protein termini, which have already provided new insights into proteolytic processes, alternative translation, and N-terminal modifications and determinants of protein stability in plants.
The ATP-dependent metalloprotease FtsH12 (filamentation temperature sensitive protein H 12) has been suggested to participate in a heteromeric motor complex, driving protein translocation into the chloroplast. FtsH12 was immuno-detected in proplastids, seedlings, leaves, and roots. Expression of Myc-tagged FtsH12 under its native promotor allowed identification of FtsHi1, 2, 4, and 5, and plastidic NAD-malate dehydrogenase, five of the six interaction partners in the suggested import motor complex. Arabidopsis thaliana mutant seedlings with reduced FTSH12 abundance exhibited pale cotyledons and small, deformed chloroplasts with altered thylakoid structure. Mature plants retained these chloroplast defects, resulting in slightly variegated leaves and lower chlorophyll content. Label-free proteomics revealed strong changes in the proteome composition of FTSH12 knock-down seedlings, reflecting impaired plastid development. The composition of the translocon on the inner chloroplast membrane (TIC) protein import complex was altered, with coordinated reduction of the FtsH12-FtsHi complex subunits and accumulation of the 1 MDa TIC complex subunits TIC56, TIC214 and TIC22-III. FTSH12 overexpressor lines showed no obvious phenotype, but still displayed distinct differences in their proteome. N-terminome analyses further demonstrated normal proteolytic maturation of plastid-imported proteins irrespective of FTSH12 abundance. Together, our data suggest that FtsH12 has highest impact during seedling development; its abundance alters the plastid import machinery and impairs chloroplast development.
Bottom-up mass spectrometry-based proteomics utilizes proteolytic enzymes with well characterized specificities to generate peptides amenable for identification by high-throughput tandem mass spectrometry. Trypsin, which cuts specifically after the basic residues lysine and arginine, is the predominant enzyme used for proteome digestion, although proteases with alternative specificities are required to detect sequences that are not accessible after tryptic digest. Here, we show that the human cysteine protease legumain exhibits a strict substrate specificity for cleavage after asparagine and aspartic acid residues during in-solution digestions of proteomes extracted from Escherichia coli, mouse embryonic fibroblast cell cultures, and Arabidopsis thaliana leaves. Generating peptides highly complementary in sequence, yet similar in their biophysical properties, legumain (as compared to trypsin or GluC) enabled complementary proteome and protein sequence coverage. Importantly, legumain further enabled the identification and enrichment of protein N-termini not accessible in GluC- or trypsin-digested samples. Legumain cannot cleave after glycosylated Asn residues, which enabled the robust identification and orthogonal validation of N-glycosylation sites based on alternating sequential sample treatments with legumain and PNGaseF and vice versa. Taken together, we demonstrate that legumain is a practical, efficient protease for extending the proteome and sequence coverage achieved with trypsin, with unique possibilities for the characterization of post-translational modification sites.
The amoeba Paulinella chromatophora contains photosynthetic organelles, termed chromatophores, that evolved independently from plastids in plants and algae. At least one-third of the chromatophore proteome consists of nucleus-encoded proteins that are imported across the chromatophore double envelope membranes. Chromatophore-targeted proteins exceeding 250 amino acids carry a conserved N-terminal extension presumably involved in protein targeting, termed the chromatophore transit peptide’(crTP). Short imported proteins do not carry discernable targeting signals. To explore whether the import of proteins is accompanied by their N-terminal processing, here we identified N termini of 208 chromatophore-localized proteins by a mass spectrometry-based approach. Our study revealed extensive N-terminal acetylation and proteolytic processing in both nucleus- and chromatophore-encoded fractions of the chromatophore proteome. Mature N termini of 37 crTP-carrying proteins were identified, of which 30 were cleaved in a common processing region. Surprisingly, only the N-terminal ∼50 amino acids (part 1) become cleaved upon import. This part contains a conserved adaptor protein-1 (AP-1) complex-binding motif known to mediate protein sorting at the trans-Golgi network followed by a predicted transmembrane helix, implying that part 1 anchors the protein co-translationally in the endoplasmic reticulum and mediates trafficking to the chromatophore via the Golgi. The C-terminal part 2 contains conserved secondary structural elements, remains attached to the mature proteins, and might mediate translocation across the chromatophore inner membrane. Short imported proteins remain largely unprocessed. Finally, this work illuminates N-terminal processing of proteins encoded in an evolutionary-early-stage organelle and suggests host-derived post-translationally acting factors involved in regulation of the chromatophore-encoded chromatophore proteome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.