IntroductionExact knowledge of femoral neck inclination and torsion angles is important in recognizing, understanding and treating pathologic conditions in the hip joint. However, published results vary widely between different studies, which indicates that there are persistent difficulties in carrying out exact measurements.MethodsA three dimensional modeling and analytical technology was used for the analysis of 1070 CT datasets of skeletally mature femurs. Individual femoral neck angles and torsion angles were precisely computed, in order to establish whether gender, age, body mass index and ethnicity influence femoral neck angles and torsion angles.ResultsThe median femoral neck angle was 122.2° (range 100.1–146.2°, IQR 117.9–125.6°). There are significant gender (female 123.0° vs. male 121.5°; p = 0.007) and ethnic (Asian 123.2° vs. Caucasian 121.9°; p = 0.0009) differences. The median femoral torsion angle was 14.2° (-23.6–48.7°, IQR 7.4–20.4°). There are significant gender differences (female 16.4° vs. male 12.1°; p = 0.0001). Femoral retroversion was found in 7.8% of the subjects.ConclusionPrecise femoral neck and torsion angles were obtained in over one thousand cases. Systematic deviations in measurement due to human error were eliminated by using automated high accuracy morphometric analysis. Small but significant gender and ethnic differences were found in femoral neck and torsion angles.
The newly developed system is a stable, fully operational simulator for sinus surgery based on standard PC hardware. Besides the limitations of a low-cost haptic device, the presented system is highly realistic regarding anatomy, visualization, manipulation, and the appearance of the tools. It is mainly intended for gaining surgical anatomy knowledge and for training navigation in a complex anatomical environment. Learning effects, including motor skills, have yet to be quantified.
A profound knowledge of anatomy and surgical landmarks of the temporal bone is a basic necessity for any otologic surgeon. Because this knowledge, so far, has been mostly taught by limited temporal bone drilling courses, our objective was to create a system for virtual petrous bone surgery that allows the realistic simulation of specific laterobasal surgical approaches. A major requirement was the development of an interactive drill-like tool, together with a new technique for realistic visualization of simulated cut surfaces. The system is based on a volumetric, high-resolution model of the temporal bone, derived from CT. Interactive volume cutting methods using a new multivolume scheme have been developed. In this scheme, cut regions are modeled independently in additional data volumes using voxelization techniques. The voxelization is adapted to successive cutting operations as needed for the simulation of a drill-like tool. A new visualization technique was developed for artifact-free rendering of sharp edges, as formed by the intersection of a cut and an object surface. The new multivolume visualization technique allows high-quality visualization of interactively generated cut surfaces. This is a necessity for a realistic simulation of petrous bone surgery. Our system therefore facilitates comprehension of the complex morphology, and enables the recognition of surgical landmarks, which is most important if injury to delicate organs (e.g., the facial nerve or auditory ossicles) is to be avoided. The system for virtual petrous bone surgery allows the simulation of specific surgical approaches with high-quality visualization. The user can learn about the complex three-dimensional anatomy of the temporal bone from the viewpoint of a real otosurgical procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.