Gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) arise primarily in the midline of the central nervous system of young children, suggesting a cooperation between genetics and cellular context in tumorigenesis. Although the genetics of H3K27M-glioma are well characterized, their cellular architecture remains uncharted. We performed single-cell RNA sequencing in 3321 cells from six primary H3K27M-glioma and matched models. We found that H3K27M-glioma primarily contain cells that resemble oligodendrocyte precursor cells (OPC-like), whereas more differentiated malignant cells are a minority. OPC-like cells exhibit greater proliferation and tumor-propagating potential than their more differentiated counterparts and are at least in part sustained by signaling. Our study characterizes oncogenic and developmental programs in H3K27M-glioma at single-cell resolution and across genetic subclones, suggesting potential therapeutic targets in this disease.
Medulloblastoma is a malignant childhood cerebellar tumour comprised of distinct molecular subgroups. Whereas genomic characteristics of these subgroups are well defined, the extent to which cellular diversity underlies their divergent biology and clinical behaviour remains largely unexplored. We used single-cell transcriptomics to investigate intra-and inter-tumoural heterogeneity in twenty-five medulloblastomas spanning all molecular subgroups. WNT, SHH, and Group 3 tumours comprised subgroup-specific undifferentiated and differentiated neuronallike malignant populations, whereas Group 4 tumours were exclusively comprised of differentiated neuronal-like neoplastic cells. SHH tumours closely resembled granule neurons of varying differentiation states that correlated with patient age. Group 3 and Group 4 tumours exhibited a developmental trajectory from primitive progenitor-like to more mature neuronal-like cells, whose relative proportions distinguished these subgroups. Cross-species transcriptomics defined distinct glutamatergic populations as putative cells-of-origin for SHH and Group 4 subtypes. Collectively, these data provide novel insights into the cellular and developmental states underlying subtypespecific medulloblastoma biology. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Summary Ependymoma is a heterogeneous entity of central nervous system tumors with well-established molecular groups. Here, we apply single-cell RNA sequencing to analyze ependymomas across molecular groups and anatomic locations to investigate their intratumoral heterogeneity and developmental origins. Ependymomas are composed of a cellular hierarchy initiating from undifferentiated populations, which undergo impaired differentiation toward three lineages of neuronal-glial fate specification. While prognostically favorable groups of ependymoma predominantly harbor differentiated cells, aggressive groups are enriched for undifferentiated cell populations. The delineated transcriptomic signatures correlate with patient survival and define molecular dependencies for targeted treatment approaches. Taken together, our analyses reveal a developmental hierarchy underlying ependymomas relevant to biological and clinical behavior.
Detailed analyses of 20 patients with sporadic neurofibromatosis type 1 (NF1) microdeletions revealed an unexpected high frequency of somatic mosaicism (8/20 [40%]). This proportion of mosaic deletions is much higher than previously anticipated. Of these deletions, 16 were identified by a screen of unselected patients with NF1. None of the eight patients with mosaic deletions exhibited the mental retardation and facial dysmorphism usually associated with NF1 microdeletions. Our study demonstrates the importance of a general screening for NF1 deletions, regardless of a special phenotype, because of a high estimated number of otherwise undetected mosaic NF1 microdeletions. In patients with mosaicism, the proportion of cells with the deletion was 91%-100% in peripheral leukocytes but was much lower (51%-80%) in buccal smears or peripheral skin fibroblasts. Therefore, the analysis of other tissues than blood is recommended, to exclude mosaicism with normal cells in patients with NF1 microdeletions. Furthermore, our study reveals breakpoint heterogeneity. The classic 1.4-Mb deletion was found in 13 patients. These type I deletions encompass 14 genes and have breakpoints in the NF1 low-copy repeats. However, we identified a second major type of NF1 microdeletion, which spans 1.2 Mb and affects 13 genes. This type II deletion was found in 8 (38%) of 21 patients and is mediated by recombination between the JJAZ1 gene and its pseudogene. The JJAZ1 gene, which is completely deleted in patients with type I NF1 microdeletions and is disrupted in deletions of type II, is highly expressed in brain structures associated with learning and memory. Thus, its haploinsufficiency might contribute to mental impairment in patients with constitutional NF1 microdeletions. Conspicuously, seven of the eight mosaic deletions are of type II, whereas only one was a classic type I deletion. Therefore, the JJAZ1 gene is a preferred target of strand exchange during mitotic nonallelic homologous recombination. Although type I NF1 microdeletions occur by interchromosomal recombination during meiosis, our findings imply that type II deletions are mediated by intrachromosomal recombination during mitosis. Thus, NF1 microdeletions acquired during mitotic cell divisions differ from those occurring in meiosis and are caused by different mechanisms.
Caffeine- and taurine-containing drinks have been on the European market for about a decade, and research on the individual constituents of these drinks indicates an improvement in cognitive performance resulting from consumption of such drinks. In this double-blind, placebo-controlled study using 10 graduate students, we obtained the P300 components of event-related potential (ERP) waveforms following an auditory oddball paradigm, measured motor reaction time, and applied the d2 test for the assessment of attention. Status of mood was assessed by the "Basler-Befindlichkeitsbogen" questionnaire, a standard test for evaluation of feelings of well-being. Measurements were made at night, prior to and starting one hour after consumption of energy drink ingredients or placebo. At the end of the experiment (midnight), P300 latency and motor reaction time were significantly longer compared with baseline measurements in the placebo group, but were unchanged in the energy drink group. In the test system for evaluating feelings of well-being, total scores, vitality scores and social extrovertedness scores were significantly decreased in the placebo group but not in the energy drink group. The findings clearly indicate that the mixture of three key ingredients of Red Bull Energy Drink used in the study (caffeine, taurine, glucuronolactone) have positive effects upon human mental performance and mood. These effects may be mediated by the action of caffeine on purinergic (adenosinergic) receptors and taurine modulation of receptors. As half of the study cohort were non-caffeine users, the described effects cannot be explained in terms of the restoration of plasma caffeine levels to normal following caffeine withdrawal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.