The aim of this paper is to apply a new lane separation methodology for the maritime sector emissions attributed to the different vessel types and marine traffic loads in the Mediterranean and the Black Sea defined via the European Marine and Observation Data network (EMODnet), developed in 2016. This methodology is implemented for the first time on the Copernicus Atmospheric Monitoring Service Global Shipping (CAMS-GLOB-SHIP v2.1) nitrogen oxides (NOX) emissions inventory, on the Sentinel-5 Precursor Tropospheric Monitoring Instrument (TROPOMI) nitrogen dioxide (NO2) tropospheric vertical column densities, and on the LOTOS-EUROS (Long Term Ozone Simulation—European Operational Smog) CTM (chemical transport model) simulations. By applying this new EMODnet-based lane separation method to the CAMS-GLOB-SHIP v2.1 emission inventory, we find that cargo and tanker vessels account for approximately 80% of the total emissions in the Mediterranean, followed by fishing, passenger, and other vessel emissions with contributions of 8%, 7%, and 5%, respectively. Tropospheric NO2 vertical column densities sensed by TROPOMI for 2019 and simulated by the LOTOS-EUROS CTM have been successfully attributed to the major vessel activities in the Mediterranean; the mean annual NO2 load of the observations and the simulations reported for the entire maritime EMODnet-reported fleet of the Mediterranean is in satisfactory agreement, 1.26 ± 0.56 × 1015 molecules cm−2 and 0.98 ± 0.41 × 1015 molecules cm−2, respectively. The spatial correlation of the annual maritime NO2 loads of all vessel types between observation and simulation ranges between 0.93 and 0.98. On a seasonal basis, both observations and simulations show a common variability. The wintertime comparisons are in excellent agreement for the highest emitting sector, cargo vessels, with the observations reporting a mean load of 0.98 ± 0.54 and the simulations of 0.81 ± 0.45 × 1015 molecules cm−2 and correlation of 0.88. Similarly, the passenger sector reports 0.45 ± 0.49 and 0.39 ± 0.45 × 1015 molecules cm−2 respectively, with correlation of 0.95. In summertime, the simulations report a higher decrease in modelled tropospheric columns than the observations, however, still resulting in a high correlation between 0.85 and 0.94 for all sectors. These encouraging findings will permit us to proceed with creating a top-down inventory for NOx shipping emissions using S5P/TROPOMI satellite observations and a data assimilation technique based on the LOTOS-EUROS chemical transport model.
The aim of this paper is to evaluate the surface concentration of nitrogen dioxide (NO2) inferred from the Sentinel-5 Precursor Tropospheric Monitoring Instrument (S5P/TROPOMI) NO2 tropospheric column densities over Central Europe for two time periods, summer 2019 and winter 2019–2020. Simulations of the NO2 tropospheric vertical column densities and surface concentrations from the Long-Term Ozone Simulation–European Operational Smog (LOTOS-EUROS) chemical transport model are also applied in the methodology. More than two hundred in situ air quality monitoring stations, reporting to the European Environment Agency (EEA) air quality database, are used to carry out comparisons with the model simulations and the spaceborne inferred surface concentrations. Stations are separated into seven types (urban traffic, suburban traffic, urban background, suburban background, rural background, suburban industrial and rural industrial) in order to examine the strengths and shortcomings of the different air quality markers, namely the NO2 vertical column densities and NO2 surface concentrations. S5P/TROPOMI NO2 surface concentrations are inferred by multiplying the fraction of the satellite and model NO2 vertical column densities with the model surface concentrations. The estimated inferred TROPOMI NO2 surface concentrations are examined further with the altering of three influencing factors: the model vertical leveling scheme, the versions of the TROPOMI NO2 data and the air mass factors applied to the satellite and model NO2 vertical column densities. Overall, the inferred TROPOMI NO2 surface concentrations show a better correlation with the in situ measurements for both time periods and all station types, especially for the industrial stations (R > 0.6) in winter. The calculated correlation for background stations is moderate for both periods (R~0.5 in summer and R > 0.5 in winter), whereas for traffic stations it improves in the winter (from 0.20 to 0.50). After the implementation of the air mass factors from the local model, the bias is significantly reduced for most of the station types, especially in winter for the background stations, ranging from +0.49% for the urban background to +10.37% for the rural background stations. The mean relative bias in winter between the inferred S5P/TROPOMI NO2 surface concentrations and the ground-based measurements for industrial stations is about −15%, whereas for traffic urban stations it is approximately −25%. In summer, biases are generally higher for all station types, especially for the traffic stations (~−75%), ranging from −54% to −30% for the background and industrial stations.
In this article, we aim to show the capabilities, benefits, as well as restrictions, of three different air quality-related information sources, namely the Sentinel-5Precursor TROPOspheric Monitoring Instrument (TROPOMI) space-born observations, the Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) ground-based measurements and the LOng Term Ozone Simulation-EURopean Operational Smog (LOTOS-EUROS) chemical transport modelling system simulations. The tropospheric NO2 concentrations between 2018 and 2021 are discussed as air quality indicators for the Greek cities of Thessaloniki and Ioannina. Each dataset was analysed in an autonomous manner and, without disregarding their differences, the common air quality picture that they provide is revealed. All three systems report a clear seasonal pattern, with high NO2 levels during wintertime and lower NO2 levels during summertime, reflecting the importance of photochemistry in the abatement of this air pollutant. The spatial patterns of the NO2 load, obtained by both space-born observations and model simulations, show the undeniable variability of the NO2 load within the urban agglomerations. Furthermore, a clear diurnal variability is clearly identified by the ground-based measurements, as well as a Sunday minimum NO2 load effect, alongside the rest of the sources of air quality information. Within their individual strengths and limitations, the space-borne observations, the ground-based measurements, and the chemical transport modelling simulations demonstrate unequivocally their ability to report on the air quality situation in urban locations.
The aim of this paper is to evaluate the surface concentration of nitrogen dioxide (NO2) inferred from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (S5P/TROPOMI) NO2 tropospheric column densities over Central Europe for two time periods, the summer of 2019 and the winter of 2019-2020. Simulations of the NO2 tropospheric vertical column densities and surface concentrations from the LOng-Term Ozone Simulation – EURopean Operational Smog (LOTOS-EUROS) chemical transport model are also applied in the methodology. More than two hundred in-situ air quality monitoring stations, reporting to the European Environment Agency (EEA) air quality database, are used to carry out comparisons with the model simulations and the space-borne inferred surface concentrations. Stations are separated into seven types (urban traffic, suburban traffic, urban background, suburban background, rural background, suburban industrial and rural industrial) in order to examine the strengths and shortcomings of the different air quality markers, namely the NO2 vertical column densities and NO2 surface concentrations. S5P/TROPOMI NO2 surface concentrations are inferred by multiplying the fraction of the satellite and model NO2 vertical column densities with the model surface concentrations. The estimated inferred TROPOMI NO2 surface concentrations are examined further with the altering of three influencing factors: the model vertical levelling scheme, the versions of the TROPOMI NO2 data and the air mass factors applied to the satellite and model NO2 vertical column densities. Overall, the inferred TROPOMI NO2 surface concentrations show a better correlation with the in-situ measurements for both time periods and all station types, especially for the industrial stations (R>0.6) in winter. The calculated correlation for background stations is moderate for both periods (R~0.5 in summer and R>0.5 in winter), whereas for traffic stations it improves in the winter (from 0.20 to 0.50). After the implementation of the air mass factors from the local model, the bias is significantly reduced for most of the station types, especially in winter for the background stations, ranging from +0.49% for the urban background to +10.37% for the rural background stations. The mean relative bias in winter between the inferred S5P/TROPOMI NO2 surface concentrations and the ground-based measurements for industrial stations is about -15%, whereas for traffic urban stations it is approximately -25%. In summertime, biases are generally higher for all station types, especially for the traffic stations (~ -75%), ranging from -54% to -30% for the background and industrial stations.
The aim of this paper is to apply a new lane separation methodology for the maritime sector emissions attributed to the different vessel types and marine traffic loads in the Mediterranean and the Black Sea defined via the European Marine and Observation Data network (EMODnet), developed in 2016. This methodology is implemented for the first time on the Copernicus Atmospheric Monitoring Service Global Shipping (CAMS-GLOB-SHIP v2.1) nitrogen dioxide (NOX) emissions inventory, on the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI) nitrogen dioxide (NO2) tropospheric vertical column densities and on the LOTOS-EUROS (LOng Term Ozone Simulation – EURopean Operational Smog) chemical transport model simulations. By applying this new, EMODnet-based lane separation method to the CAMS-GLOB-SHIP v2.1 emission inventory, we find that cargo and tanker vessels account for approximately 80% of the total emissions in the Mediterranean, followed by fishing, passenger, and other vessel emissions with contributions of 8%, 7% and 5%, respectively. Tropospheric NO2 vertical column densities sensed by TROPOMI for 2019 and simulated by the LOTOS-EUROS CTM have been successfully attributed to the major vessel activities in the Mediterranean; the mean annual NO2 load of the observations and the simulations reported for the entire maritime EMODnet-reported fleet of the Mediterranean is in satisfactory agreement, 1.26 ± 0.56x1015 molecules cm-2 and 0.98 ± 0.41x1015 molecules cm-2, respectively. The spatial correlation of the annual maritime NO2 loads of all vessel types between observation and simulation ranges between 0.93 and 0.98. On seasonal basis, both observations and simulations show a common variability. The winter-time comparisons are in excellent agreement for the highest emitting sector, cargo vessels, with the observations reporting a mean load of 0.98 ± 0.54 and the simulations of 0.81 ± 0.45x1015 molecules cm-2 and correlation of 0.88. Similarly, the passenger sector reports 0.45 ± 0.49 and 0.39 ± 0.45x1015 molecules cm-2 respectively, with correlation of 0.95. In summertime, the simulations report a higher decrease in modelled tropospheric columns than the observations, however still resulting in a high correlation between 0.85 and 0.94 for all sectors. These encouraging findings will permit us to proceed with creating a top-down inventory for NOx shipping emissions using S5P/TROPOMI satellite observations and a data assimilation technique based on the LOTOS-EUROS chemical transport model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.