& Context Mechanical wood properties are increasingly relevant for structural applications and are influenced by growing space availability. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) has an increasing market share in Europe and is mainly processed to sawn timber. & Aim A sample of 164 thinning trees was taken from two Douglas-fir long-term forestry research plots in Germany. The end-use quality of about 2,000 side and center boards was analyzed as a function of initial plant density (1,000, 2,000, and 4,000 trees per hectare) and log position within the stem. & Methods Sawn timber quality was described by knottiness, density, modulus of elasticity, and strength. Explanatory parameters were radial position, longitudinal position, and initial plant density. All boards were strength graded visually and by the grading machine GoldenEye-706 using both X-rays for detecting densities and size as well as position of knots and laser interferometry for detecting eigenfrequency (DIN 4074, DIN 2012; EN 14081-2, CEN 2010). & Results High plant density led to better mechanical sawn timber quality. Significant differences were especially observed between 1,000 and 2,000 trees per hectare. The yield of machine strength-graded center boards of strength class C24 increased from 50 to 89 % at low and high initial plant density, respectively. & Conclusion Foresters are able to improve end-product quality by controlling planting density in particular. The roundwood price that foresters get should be based on the proportion of higher strength classes within logs to give incentives for a more quality-oriented forest management.
& Key message Industrial computed tomography scanning of logs provides detailed information on timber quality prior to sawing. A sawing simulation-considering log rotation angle and knot size accuracy-revealed an average value increase of up to 20% for the best angle compared to the conventional horns-up position. & Context Computed tomography (CT) scanning has the potential to improve the value of products sawn from logs and meets the increasing demands of the wood industry for detailed information on log quality prior to processing. & Aims In a validation step, automated measurements of knot cluster variable DAB (DIN 4074-1:2012-06) using CT were compared with manual measurements. In a second optimization step, the hypothesis that the value of the sawn products is increased by sawing at the best rotation angle as opposed to the horns-up position was tested. & Methods A sample of 36 Douglas-fir logs were scanned in an industrial CT scanner, and sawn into boards. Knots on the boards were manually measured, and compared with the corresponding knots on virtual boards created from the CT data. The error of the DAB was measured by comparing CT data to manual measurements. An optimized sawing simulation was performed, using the measured DAB error to account for CT measurement errors, as well as a rotational error to account for errors in the log turning equipment. Using the results of the sawing simulation, Monte Carlo simulations were performed to show the potential and benefit of an industrial CT scanner. & Results The three largest DABs measured by the CT showed good correlation to the measurements on the manual boards. The simulation revealed an average increase of value from 4 to 20% compared to the conventional horns-up position depending on the relative price differences between the strength grades. & Conclusion By using a CT scanner to optimize sawing, sawmill owners can process logs in a better way to produce final products with increased added value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.