Background: Pesticide levels are generally monitored within agricultural areas, but are commonly not assessed at public places. To assess possible contamination of non-target areas, 71 public playgrounds located next to intensively managed apple and wine orchards were selected in four valleys of South Tyrol (northern Italy). Further, the impact of environmental site characteristics on the number and concentration of pesticides was assessed. Grass samples from the selected playgrounds were collected and screened for 315 pesticide residues using standard gas chromatography and mass spectrometry.Results: Nearly half of the playgrounds (45%) were contaminated by at least one pesticide and a quarter (24%) by more than one. Eleven of the 12 different detected pesticides are classified as endocrine-active substances including the insecticide phosmet and the fungicide fluazinam showing the highest concentrations (0.069 and 0.26 mg kg −1 , respectively). Additionally, one disinfectant and one preservation agent was found. Playgrounds in Venosta valley were most often contaminated (76% of all investigated playgrounds), highest concentrations were found in the Low Adige (2.02 mg kg −1 ). Pesticide concentrations were positively associated with areal proportion of apple orchards in the surroundings, the amount of rainfall and wind speed. In contrast, increasing global irradiance, opposite wind direction, increasing distance to agricultural sites and high wind speeds when pesticide application was not allowed were associated with decreasing pesticide contamination. Conclusion:This study is among the first investigating pesticide contamination of public playgrounds together with environmental factors in areas with pesticide-intensive agriculture at the beginning of the growing season. It is likely that playgrounds will be affected by more pesticides and higher concentrations over the course of the crop season. The result, that the majority of the detected pesticides are classified as endocrine active is worrisome as children are especially vulnerable. Hence, we recommend that pesticide risk assessments should better include protection measures for non-target areas.
Abstract. During dry spells, non-rainfall water (hereafter NRW) mostly formed from dew and fog potentially plays an increasingly important role in temperate grassland ecosystems with ongoing global warming. Dew and radiation fog occur in combination during clear and calm nights, and both use ambient water vapor as a source. Research on the combined mechanisms involved in NRW inputs to ecosystems is rare, and distillation of water vapor from the soil as a NRW input pathway for dew formation has hardly been studied. Furthermore, eddy covariance (EC) measurements are associated with large uncertainties on clear, calm nights when dew and radiation fog occur. The aim of this paper is thus to use stable isotopes as tracers to investigate the different NRW input pathways into a temperate Swiss grassland at Chamau during dry spells in summer 2018. Stable isotopes provide additional information on the pathways from water vapor to liquid water (dew and fog) that cannot be measured otherwise. We measured the isotopic composition (δ18O, δ2H, and d=δ2H-8⋅δ18O) of ambient water vapor, NRW droplets on leaf surfaces, and soil moisture and combined them with EC and meteorological observations during one dew-only and two combined dew and radiation fog events. The ambient water vapor d was found to be strongly linked with local surface relative humidity (r=-0.94), highlighting the dominant role of local moisture as a source for ambient water vapor in the synoptic context of the studied dry spells. Detailed observations of the temporal evolution of the ambient water vapor and foliage NRW isotopic signals suggest two different NRW input pathways: (1) the downward pathway through the condensation of ambient water vapor and (2) the upward pathway through the distillation of water vapor from soil onto foliage. We employed a simple two-end-member mixing model using δ18O and δ2H to quantify the NRW inputs from these two different sources. With this approach, we found that distillation contributed 9 %–42 % to the total foliage NRW, which compares well with estimates derived from a near-surface vertical temperature gradient method proposed by Monteith in 1957. The dew and radiation fog potentially produced 0.17–0.54 mm d−1 NRW gain on foliage, thereby constituting a non-negligible water flux to the canopy, as compared to the evapotranspiration of 2.7 mm d−1. Our results thus underline the importance of NRW inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycle in such conditions, including different pathways of dew and radiation fog water inputs.
Abstract. Non-rainfall water (NRW), defined here as dew, hoar frost, fog, rime, and water vapour adsorption, might be a relevant water source for ecosystems, especially during summer drought periods. These water inputs are often not considered in ecohydrological studies, because water amounts of NRW events are rather small and therefore difficult to measure. Here we present a novel micro-lysimeter (ML) system and its application which allows us to quantify very small water inputs from NRW during rain-free periods with an unprecedented high accuracy of ±0.25 g, which corresponds to ±0.005 mm water input. This is possible with an improved ML design paired with individual ML calibrations in combination with high-frequency measurements at 3.3 Hz and an efficient low-pass filtering to reduce noise level. With a set of ancillary sensors, the ML system furthermore allows differentiation between different types of NRW inputs, i.e. dew, hoar frost, fog, rime, and the combinations among these, but also additional events when condensation on leaves is less probable, such as water vapour adsorption events. In addition, our ML system design allows one to minimize deviations from natural conditions in terms of canopy and soil temperatures, plant growth, and soil moisture. This is found to be a crucial aspect for obtaining realistic NRW measurements in short-statured grasslands. Soil temperatures were higher in the ML compared to the control, and thus further studies should focus on improving the thermal soil regime of ML. Our ML system has proven to be useful for high-accuracy, long-term measurements of NRW on short-statured vegetation-like grasslands. Measurements with the ML system at a field site in Switzerland showed that NRW input occurred frequently, with 127 events over 12 months with a total NRW input of 15.9 mm. Drainage-water flow of the ML was not measured, and therefore the NRW inputs might be conservative estimates. High average monthly NRW inputs were measured during summer months, suggesting a high ecohydrological relevance of NRW inputs for temperate grasslands.
Abstract. In a warmer climate, non-rainfall water (hereafter NRW) formed from dew and fog potentially plays an increasingly important role in temperate grassland ecosystems under the scarcity of precipitation over prolonged periods. Dew and radiation fog occur in combination during clear and calm nights, and both use ambient water vapor as a source. Research on the combined mechanisms involved in NRW inputs to ecosystems are rare, and the condensation of soil-diffusing vapor, as one of the NRW input pathways for dew formation, has hardly been studied at all. The aim of this paper is thus to investigate the different NRW input pathways into a temperate Swiss grassland at Chamau during prolonged dry periods in summer 2018. We measured the isotopic compositions (δ18O, δ2H, and d = δ2H − 8 · δ18O) of both ambient water vapor and the NRW droplets on leaf surfaces combined with eddy covariance and meteorological measurements during one dew-only and two combined dew and radiation fog events. We employed a simple two end-member mixing model using δ18O and δ2H to split the dew input pathways from different sources. Our results showed a decrease of 0.8–5.5 mmol mol−1 in volumetric water vapor mixing ratio and a decrease of 4.8–16.7 ‰ in ambient water vapor δ2H due to dew formation and radiation fog droplet deposition. A nighttime maximum in ambient water vapor δ18O (−15.5 ‰ to −14.3 ‰) and a 3.4–3.7 ‰ decrease in ambient water vapor d were observed for dew formation in unsaturated conditions. In conditions of slight super-saturation, a stronger decrease of ambient water vapor δ18O (0.3–1.5 ‰) and a minimum of ambient water vapor d (−6.0 ‰ to −4.7 ‰) were observed. The combined foliage NRW and ambient water vapor δ18O and δ2H suggested two different input pathways: (1) condensation of ambient water vapor and (2) of soil-diffusing vapor. The latter contributed 9–42 % to the total foliage NRW. The dew and radiation fog potentially produced 0.06–0.39 mm night−1 NRW gain on foliage, which was comparable with 2.8 mm day−1 daytime evapotranspiration. The ambient water vapor d was correlated and anti-correlated with ambient temperature and ambient relative humidity respectively, suggesting an only minor influence of large-scale air advection and highlighted the dominant role of local moisture as a source for ambient water vapor. Our results thus highlight the importance of NRW inputs to temperate grasslands during prolonged dry periods and reveal the complexity of the local water cycle in such conditions including different pathways of water deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.