Gears are essential machine elements in the drivetrain and transmission technology. The operational behaviour of a gear pairing is influenced by the design of the gear kinematics as well as the component properties. With regard to an improvement of performance and service life, the targeted modification of tooth geometry and component properties offers a promising approach. Thus, the achievable geometric and mechanical component properties are influenced by the manufacturing process, which must be taken into account in the design process. The application of virtual evaluation methods is suitable for this purpose. For the manufacturing of steel gears, cold forging provides the potential of achieving beneficial mechanical properties in a highly productive process. Major challenges for the industrial application are the short service life of the cost- intensive tools and the low geometric accuracy in comparison to machining processes. Within this study the design of the tooth geometry as well as the associated forming tool are investigated. The aim is to derive recommendations regarding an optimization of the resulting component properties and operational behaviour.
To meet rising customer requirements, increasingly complex products have to be virtually validated. To achieve this within the framework of virtual product development, a wide range of aspects has to be taken into account. In this context, tolerance analysis has established itself as a proven tool to evaluate the consequences of geometric part deviations on geometric product characteristics. Existing approaches, however, do not sufficiently take into account production-specific deviations, leading to time-consuming iterations during the product development process. Therefore, the focus of this contribution is on process-oriented interdisciplinary tolerance management that allows the integration of manufacturing simulations into the tolerance analysis. In contrast to the conventional approach, this novel methodology allows to avoid unnecessary iterations in the context of product development and validation. Following the presentation of the novel procedure, the application on a case study of an X- ray shutter is carried out, whereby surrogate models are integrated in order to reduce the computing time.
Compared to alternative production methods, cold forming offers technological, economic and ecological potential for the mass production of microgears. Within the current boundaries of the technology, the cold forming of modules m < 0.2 mm is not possible due to size effects, high tool stresses and handling problems. The investigations of this contribution present a novel process chain for the multi-step forming of microgears with a module of m = 0.1 mm. For this purpose, a numerical model of the first two steps of the process chain is set up and confirmed based on experimental forming tests. The results have proven the feasibility of the process chain by a complete forming of the gear teeth.
Due to growing competitive pressure within the manufacturing sector, there have been increasing attempts to establish resource saving production methods in gear manufacturing within recent years. Cold forging offers the potential—in addition to a high material and energy efficiency—to produce gears with an excellent surface quality, increased hardness as well as a load adapted fiber orientation. With regard to the wide range of applications there is a broad demand for gear materials, ranging from high-strength steels to non-ferrous and light metals. The flow behavior of the material has a significant influence on the cold forging process. Therefore, no consistent process result is achieved when forming different materials. Challenges exist due to deficient die filling and poor resulting geometrical accuracy. In this contribution, material-specific challenges during the full forward extrusion of gears from non-ferrous and light metals have been identified and suitable tool-sided measures were derived. A validated numerical process model was used to determine the underlying mechanisms of action and to verify the derived measures. A reduced yield stress leads to inflow formation, insufficient die filling, and low achievable strain hardening, as well as gearing accuracy. The tool-sided measures achieved a significant increase of resulting die filling and gearing accuracy as well as the mechanical properties. That provides the basis for the production of ready-to-use gears from various metal materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.