Regulatory B cells (Breg) have attracted increasing attention for their roles in maintaining peripheral tolerance. Interleukin 33 (IL-33) is a recently identified IL-1 family member, which leads a double-life with both pro- and anti-inflammatory properties. We report here that peritoneal injection of IL-33 exacerbated inflammatory bowel disease in IL-10-deficient (IL-10−/−) mice, whereas IL-33-treated IL-10-sufficient (wild type) mice were protected from the disease induction. A phenotypically unconventional subset(s) (CD19+CD25+CD1dhiIgMhiCD5-CD23-Tim-1-) of IL-10 producing Breg-like cells (BregIL-33) was identified responsible for the protection. We demonstrated further that BregIL-33 isolated from these mice could suppress immune effector cell expansion and functions and, upon adoptive transfer, effectively blocked the development of spontaneous colitis in IL-10−/− mice. Our findings indicate an essential protective role, hence therapeutic potential, of BregIL-33 against mucosal inflammatory disorders in the gut.
Here, we introduce a novel method for high precision aortic constriction in mice with high intra- and inter-surgeon reproducibility and low post-operative mortality that allows generation of specific cardiac disease phenotypes.
Background
Pressure overload of the heart occurs in patients with hypertension or valvular stenosis and induces cardiac fibrosis because of excessive production of extracellular matrix by activated cardiac fibroblasts. This initially provides essential mechanical support to the heart, but eventually compromises function. Osteopontin is associated with fibrosis; however, the underlying signaling mechanisms are not well understood. Herein, we examine the effect of thrombin‐cleaved osteopontin on fibrosis in the heart and explore the role of syndecan‐4 in regulating cleavage of osteopontin.
Methods and Results
Osteopontin was upregulated and cleaved by thrombin in the pressure‐overloaded heart of mice subjected to aortic banding. Cleaved osteopontin was higher in plasma from patients with aortic stenosis receiving crystalloid compared with blood cardioplegia, likely because of less heparin‐induced inhibition of thrombin. Cleaved osteopontin and the specific osteopontin peptide sequence
RGDSLAYGLR
that is exposed after thrombin cleavage both induced collagen production in cardiac fibroblasts. Like osteopontin, the heparan sulfate proteoglycan syndecan‐4 was upregulated after aortic banding. Consistent with a heparan sulfate binding domain in the osteopontin cleavage site, syndecan‐4 was found to bind to osteopontin in left ventricles and cardiac fibroblasts and protected osteopontin from cleavage by thrombin. Shedding of the extracellular part of syndecan‐4 was more prominent at later remodeling phases, at which time levels of cleaved osteopontin were increased.
Conclusions
Thrombin‐cleaved osteopontin induces collagen production by cardiac fibroblasts. Syndecan‐4 protects osteopontin from cleavage by thrombin, but this protection is lost when syndecan‐4 is shed in later phases of remodeling, contributing to progression of cardiac fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.