The relative roles that geographical isolation and selection play in driving population divergence remain one of the central questions in evolutionary biology. We approached this question by investigating genetic and morphological variation among populations of the strawberry poison frog, Dendrobates pumilio, in the Bocas del Toro archipelago, Panama. We found significant population genetic structure and isolation by distance based on amplified fragment length polymorphism markers. Snout vent length (SVL), coloration and the extent and size of dorsal black spots showed large variation among the studied populations. Differences in SVL correlated with genetic distance, whereas black spot patterns and other coloration parameters did not. Indeed, the latter characters were observed to be dramatically different between contiguous populations located on the same island. These results imply that neutral divergence among populations may account for the genetic patterns based on amplified fragment length polymorphism markers and SVL. However, selective pressures need to be invoked in order to explain the extraordinary variation in spot size and coverage, and coloration. We discuss the possibility that the observed variation in colour morphs is a consequence of a combination of local variation in both natural selection on an aposematic signal towards visual predators and sexual selection generated by colour morph-specific mate preferences.
Research on the role of sexual selection in the speciation process largely focuses on the diversifying role of mate choice. In particular, much attention has been drawn to the fact that population divergence in mate choice and in the male traits subject to choice directly can lead to assortative mating. However, male contest competition over mates also constitutes an important mechanism of sexual selection. We review recent empirical studies and argue that sexual selection through male contest competition can affect speciation in ways other than mate choice. For example, biases in aggression towards similar competitors can lead to disruptive and negative frequency-dependent selection on the traits used in contest competition in a similar way as competition for other types of limited resources. Moreover, male contest abilities often trade-off against other abilities such as parasite resistance, protection against predators and general stress tolerance. Populations experiencing different ecological conditions should therefore quickly diverge non-randomly in a number of traits including male contest abilities. In resource based breeding systems, a feedback loop between competitive ability and habitat use may lead to further population divergence. We discuss how population divergence in traits used in male contest competition can lead to the build up of reproductive isolation through a number of different pathways. Our main conclusion is that the role of male contest competition in speciation remains largely scientifically unexplored.
Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.
The likelihood of speciation is assumed to increase when sexually selected traits diverge together with ecologically important traits. According to sexual selection theory, the evolution of exaggerated display behavior is driven by increased mating success, but limited by natural selection, for example, through predation. However, the evolution of aposematic coloration (i.e., an ecologically important trait) could relieve the evolution of exaggerated display behavior from the bound of predation, resulting in joint divergence in aposematic coloration and sexual display behavior between populations. We tested this idea by examining conspicuousness, using color contrasts between individuals and their native backgrounds, and sexual display of 118 males from genetically diverged populations of the Strawberry poison frog, Dendrobates pumilio. Our results show that the level of conspicuousness of the population predicts the sexual display behavior of males. Males from conspicuous populations used more exposed calling sites.We argue that changes in aposematic coloration may rapidly cause not only postmating isolation due to poorly adapted hybrids, but also premating isolation through shifts in mating behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.