Achieving deep flexion after total knee replacement remains a challenge. In this study we compared the soft-tissue tension and tibiofemoral force in a mobile-bearing posterior cruciate ligament-sacrificing total knee replacement, using equal flexion and extension gaps, and with the gaps increased by 2 mm each. The tests were conducted during passive movement in five cadaver knees, and measurements of strain were made simultaneously in the collateral ligaments. The tibiofemoral force was measured using a customised mini-force plate in the tibial tray. Measurements of collateral ligament strain were not very sensitive to changes in the gap ratio, but tibiofemoral force measurements were. Tibiofemoral force was decreased by a mean of 40% (SD 10.7) after 90 degrees of knee flexion when the flexion gap was increased by 2 mm. Increasing the extension gap by 2 mm affected the force only in full extension. Because increasing the range of flexion after total knee replacement beyond 110 degrees is a widely-held goal, small increases in the flexion gap warrant further investigation.
Despite ongoing evolution in total knee arthroplasty (TKA) prosthesis design, restricted flexion continues to be common postoperatively. Compressive tibiofemoral force during flexion is generated through the interaction between soft tissues and prosthesis geometry. In this study, we compared the compressive tibiofemoral force in vitro of four commonly used prostheses: fixed-bearing PCL (posterior cruciate ligament)-retaining (PFC), mobile-bearing posterior-stabilized (PS), posterior-stabilized with a High Flex femoral component (HF), and mobile-bearing PCLsacrificing (LCS). Fourteen fresh-frozen cadaver knee joints were tested in a passive motion rig, and tibiofemoral force measured using a modified tibial baseplate instrumented with six load cells. The implants without posterior stabilization displayed an exponential increase in force after 908 of flexion, while PS implants maintained low force throughout the range of motion. The fixed-bearing PFC prosthesis displayed the highest peak force (214 AE 68 N at 1508 flexion). Sacrifice of the PCL decreased the peak force to a level comparable with the LCS implant. The use of a PCL-substituting post and cam system reduced the peak force up to 78%, irrespective of whether it was a high-flex or a standard PS knee. However, other factors such as preoperative range of motion, knee joint kinematics, soft tissue impingement, and implantation technique play a role in postoperative knee function. The present study suggests that a posterior-stabilized TKA design might be advantageous in reducing soft tissue tension in deep flexion. Further research is necessary to fully understand all factors affecting knee flexion after TKA. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.