Mechanical polishing of glass is a time consuming process especially for lenses deviating from spherical surface such as aspheres. With laser polishing, the processing time can be significantly reduced and the wear of hard tooling can be avoided. Using laser radiation for polishing, a thin surface layer of the glass is heated up just below evaporation temperature due to the interaction of glass material and laser radiation. With increasing temperature, the reduced viscosity in the surface layer leads to the reduction of the roughness due to the surface tension. Hence, a contactless polishing method can be realized nearly without any loss of material or need of polishing agent. In this paper, results for laser polishing of fused silica, BK7, and S-TIH6 are presented with area rates up to 5 cm2/s. However, the results show that the achieved roughness with laser polishing is strongly influenced by the thermal properties of the type of glass. During laser polishing, the glass material is relocated at the surface, thus no shape errors can be corrected. To reduce the residual waviness and shape errors after laser polishing, the authors investigated a further laser-based process step (laser beam figuring, LBF) which ablates material for a shape correction. Ablation depths <5 nm allow a high precision laser ablation for selective processing. For both processes, a CO2 laser is used
Recent results of processing fused silica using a high-power Q-switched CO2 laser source with a maximum output power of 200 W are presented. Compared to the processing with continuous wave laser radiation, the main advantage of pulsed laser radiation is the influence of the light-matter interaction with high laser peak power at small average laser power. An application for the approach presented in this paper is the flexible manufacturing and form correction of optics. This laser-based process is nearly independent of the surface geometry and can even be enhanced by laser polishing and expanded to other glass materials. Hence, the high-power Q-switched CO2 laser source is used to ablate glass material with an ablation rate up to 2.35 mm3/s and also for ablating glass material locally in a vertical dimension down to 3 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.