Electricity generated by hydro power is the most widely used form of renewable energy, and as such, its vulnerability to climate change is of great interest. The aim of this work is to estimate the change in river discharge characteristics in the Alpine region due to possible impacts of climate and the related changes in the power generation of run-of-river hydro power plants up to 2050. Four representative bias-corrected climate simulations from the ENSEMBLES project are chosen based on the SRES greenhouse gas emission scenario pathway A1B. Data of these simulations serve as input for a lumped-parameter rainfall-runoff model at a monthly time step, which is calibrated on discharge data of gauging stations along important rivers in the Alpine region. A power plant model fed with runoff data generated by the hydrological model is used to compute changes in the long-term average annual net electrical energy output of hydro power plants for the whole Alpine region; while the model for Austria is based on known technical parameters of the power plants, a more simplified approach is employed elsewhere. The general warming trend observed in all four climate scenarios causes to various degrees a seasonal shift towards earlier runoff. However, more diverse changes in precipitation for the different climate scenarios and time periods result in diverging hydrological projections. Although the annual runoff is found to decrease in some scenarios, the generally observed shift of runoff towards the winter season that typically shows higher energy consumption in the Alpine region suggests that the overall impact for the electricity sector tends to be positive rather than negative. Estimated changes in the average annual electricity generation of runof-river plants are generally found to be within a singledigit percentage range but can be either positive or negative depending on the climate scenario. The estimated ranges reflect the diversity (uncertainty) of the climate models; the total bandwidth of possible changes in the water availability and hydro power generation in the Alpine region up to 2050 is assumed to be even higher, because of other uncertainties in the model chain that are not explicitly considered here. Nevertheless, as the general regional trends and bandwidth of changes in runoff and hydro power production strongly depend on the future changes in precipitation, the results of this work provide reasonable orders of magnitude of expected changes and are seen as a first step towards an improved understanding of climate impacts on hydro power production within the entire Alpine region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.