Study design
Prospective multi-center study.
Objective
The study aimed to evaluate the accuracy of pedicle screw placement using a skin marker-based optical surgical navigation system for minimal invasive thoraco-lumbar-sacral pedicle screw placement.
Methods
The study was performed in a hybrid Operating Room with a video camera-based navigation system integrated in the imaging hardware. The patient was tracked with non-invasive skin markers while the instrument tracking was via an on-shaft optical marker pattern. The screw placement accuracy assessment was performed by three independent reviewers, using the Gertzbein grading. The screw placement time as well as the staff and patient radiation doses was also measured.
Results
In total, 211 screws in 39 patients were analyzed for screw placement accuracy. Of these 32.7% were in the thoracic region, 59.7% were in the lumbar region, and 7.6% were in the sacral region. An overall accuracy of 98.1% was achieved. No screws were deemed severely misplaced (Gertzbein grading 3). The average time for screw placement was 6 min and 25 secs (± 3 min 33 secs). The average operator radiation dose per subject was 40.3 µSv. The mean patient effective dose (ED) was 11.94 mSv.
Conclusion
Skin marker-based ON can be used to achieve very accurate thoracolumbarsacral pedicle screw placements.
Objectives
To compare intraoperative 3D fluoroscopy with a ceiling-mounted flat panel detector in plate osteosynthesis of distal radius fractures (AO/OTA 2R3C1.2) with volar locking plate systems to conventional 2D fluoroscopy for detection of insufficient fracture reduction, plate misplacement and protruding screws.
Methods
Using a common volar approach on 12 cadaver forearms, total intraarticular distal radius fractures were induced, manually reduced and internally fixated with a 2.4 distal radius locking compression plate. 2D (anterior-posterior and lateral) and 3D (rotational) fluoroscopic images were taken as well as computed tomographies. Fluoroscopic images, Cone Beam CT (CBCT), 360° rotating sequences (so called “Movies”) and CT scans were co-evaluated by a specialist orthopedic surgeon and a specialist radiologist regarding quality of fracture reduction, position of plate, position of the three distal locking screws and position of the three diaphyseal screws. In reference to gold standard CT, sensitivity and specifity were analyzed.
Results
“Movie” showed highest sensitivity for detection of insufficient fracture reduction (88%). Sensitivity for detection of incorrect position of plate was 100% for CBCT and 90% for “Movie.” For intraarticular position of screws, 2D fluoroscopy and CBCT showed highest sensitivity and specifity (100 and 91%, respectively). Regarding detection of only marginal intraarticular position of screws, sensitivity and specifity of 2D fluoroscopy reached 100% (CBCT: 100 and 83%). “Movie” showed highest sensitivity for detection of overlapping position of screws (100%). When it comes to specifity, CBCT achieved 100%. Regarding detection of only marginal overlapping position of screws, 2D fluoroscopy and “Movie” showed highest sensitivity (100%). CBCT achieved highest specifity (100%).
Conclusion
As for assessment of quality of fracture reduction and detection of incorrect position of plate as well as overlapping position of the three diaphyseal screws CBCT and “Movie” are comparable to CT – especially when combined. Particularly sensitivity is high compared to standard 2D fluoroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.