It is commonly understood that a verification tool should provide a counterexample to witness a specification violation. Until recently, software verifiers dumped error witnesses in proprietary formats, which are often neither human-nor machine-readable, and an exchange of witnesses between different verifiers was impossible. To close this gap in softwareverification technology, we have defined an exchange format for error witnesses that is easy to write and read by verification tools (for further processing, e.g., witness validation) and that is easy to convert into visualizations that conveniently let developers inspect an error path. To eliminate manual inspection of false alarms, we develop the notion of stepwise testification: in a first step, a verifier finds a problematic program path and, in addition to the verification result false, constructs a witness for this path; in the next step, another verifier re-verifies that the witness indeed violates the specification. This process can have more than two steps, each reducing the state space around the error path, making it easier to validate the witness in a later step. An obvious application for testification is the setting where we have two verifiers: one that is efficient but imprecise and another one that is precise but expensive. We have implemented the technique of error-witness-driven program analysis in two state-of-the-art verification tools, CPAchecker and Ultimate Automizer, and show by experimental evaluation that the approach is applicable to a large set of verification tasks.
Continuous testing during development is a well-established technique for software-quality assurance. Continuous model checking from revision to revision is not yet established as a standard practice, because the enormous resource consumption makes its application impractical. Model checkers compute a large number of verification facts that are necessary for verifying if a given specification holds. We have identified a category of such intermediate results that are easy to store and efficient to reuse: abstraction precisions. The precision of an abstract domain specifies the level of abstraction that the analysis works on. Precisions are thus a precious result of the verification effort and it is a waste of resources to throw them away after each verification run. In particular, precisions are reasonably small and thus easy to store; they are easy to process and have a large impact on resource consumption. We experimentally show the impact of precision reuse on industrial verification problems created from 62 Linux kernel device drivers with 1 119 revisions.
Abstract. In symbolic software model checking, most approaches use predicates as symbolic representation of the state space, and SMT solvers for computations on the state space; BDDs are sometimes used as auxiliary data structure. The representation of software state spaces by BDDs was not yet thoroughly investigated, although BDDs are successful in hardware verification. The reason for this is that BDDs do not efficiently support all operations that are needed in software verification. In this work, we evaluate the use of a pure BDD representation of integer variable values, and focus on a particular class of programs: event-conditionaction systems with limited operations. A symbolic representation using BDDs seems appropriate for this particular class of programs. We implement a program analysis based on BDDs and experimentally compare three symbolic techniques to verify reachability properties of ECA programs. The results show that BDDs are efficient, which yields the insight that BDDs could be used selectively for some variables (to be determined by a pre-analysis), even in general software model checking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.