Context is widely considered for NLP and knowledge discovery since it highly influences the exact meaning of natural language. The scientific challenge is not only to extract such context data, but also to store this data for further NLP approaches. Here, we propose a multiple step knowledge graphbased approach to utilize context data for NLP and knowledge expression and extraction. We introduce the graph-theoretic foundation for a general context concept within semantic networks and show a proof-of-concept-based on biomedical literature and text mining. We discuss the impact of this novel approach on text analysis, various forms of text recognition and knowledge extraction and retrieval.
Contextual information is widely considered for NLP and knowledge discovery in life sciences since it highly influences the exact meaning of natural language. The scientific challenge is not only to extract such context data, but also to store this data for further query and discovery approaches. Classical approaches use RDF triple stores, which have serious limitations. Here, we propose a multiple step knowledge graph approach using labeled property graphs based on polyglot persistence systems to utilize context data for context mining, graph queries, knowledge discovery and extraction. We introduce the graph-theoretic foundation for a general context concept within semantic networks and show a proof of concept based on biomedical literature and text mining. Our test system contains a knowledge graph derived from the entirety of PubMed and SCAIView data and is enriched with text mining data and domain-specific language data using Biological Expression Language. Here, context is a more general concept than annotations. This dense graph has more than 71M nodes and 850M relationships. We discuss the impact of this novel approach with 27 real-world use cases represented by graph queries. Storing and querying a giant knowledge graph as a labeled property graph is still a technological challenge. Here, we demonstrate how our data model is able to support the understanding and interpretation of biomedical data. We present several real-world use cases that utilize our massive, generated knowledge graph derived from PubMed data and enriched with additional contextual data. Finally, we show a working example in context of biologically relevant information using SCAIView.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.