The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.
The hepatitis B virus (HBV), family Hepadnaviridae, is one of most relevant human pathogens. HBV origins are enigmatic, and no zoonotic reservoirs are known. Here, we screened 3,080 specimens from 54 bat species representing 11 bat families for hepadnaviral DNA. Ten specimens (0.3%) from Panama and Gabon yielded unique hepadnaviruses in coancestral relation to HBV. Full genome sequencing allowed classification as three putative orthohepadnavirus species based on genome lengths (3,149-3,377 nt), presence of middle HBV surface and X-protein genes, and sequence distance criteria. Hepatic tropism in bats was shown by quantitative PCR and in situ hybridization. Infected livers showed histopathologic changes compatible with hepatitis. Human hepatocytes transfected with all three bat viruses cross-reacted with sera against the HBV core protein, concordant with the phylogenetic relatedness of these hepadnaviruses and HBV. One virus from Uroderma bilobatum, the tent-making bat, cross-reacted with monoclonal antibodies against the HBV antigenicity determining S domain. Up to 18.4% of bat sera contained antibodies against bat hepadnaviruses. Infectious clones were generated to study all three viruses in detail. Hepatitis D virus particles pseudotyped with surface proteins of U. bilobatum HBV, but neither of the other two viruses could infect primary human and Tupaia belangeri hepatocytes. Hepatocyte infection occurred through the human HBV receptor sodium taurocholate cotransporting polypeptide but could not be neutralized by sera from vaccinated humans. Antihepadnaviral treatment using an approved reverse transcriptase inhibitor blocked replication of all bat hepadnaviruses. Our data suggest that bats may have been ancestral sources of primate hepadnaviruses. The observed zoonotic potential might affect concepts aimed at eradicating HBV.evolution | zoonosis | virome | metagenomics | reverse genetics M ore than 40% of the human population has been infected with the hepatitis B virus (HBV), giving rise to 240 million chronic HBV carriers and ca. 620,000 HBV-associated deaths annually (1). A prophylactic vaccine containing the small HBV genotype A2 surface antigen (SHB) is part of the worldwide Expanded Program on Immunization. Because of the general success of SHBs-based vaccination, global eradication of HBV has been considered achievable (2, 3). Potential for the virus to be eradicated is supported by the fact that there are no known animal reservoirs. However, recent studies addressing the distribution of pathogens related to human viruses in wild animals, including mumps-and measles-related viruses in bats, have uncovered surprising putative novel reservoirs for human-pathogenic viruses (4). SignificanceHepatitis B virus (HBV) is the prototype hepadnavirus; 40% of humans have current or past infection. In a global investigation of viral diversity in bats, we discovered three unique hepadnavirus species. The relatedness of these viruses to HBV suggests that bats might constitute ancestral sources of primate hepadnaviruse...
Cardioviruses cause serious disease, mainly in rodents, including diabetes, myocarditis, encephalomyelitis, and multiple sclerosis-like disseminated encephalomyelitis. Recently, a human virus isolate obtained 25 years ago, termed Saffold virus, was sequenced and classifi ed as a cardiovirus. We conducted systematic molecular screening for Saffold-like viruses in 844 fecal samples from patients with gastroenteritis from Germany and Brazil, across all age groups. Six cardioviruses were identifi ed in patients <6 years of age. Viral loads were 283,305-5,044,412,175 copies/g of stool. Co-infections occurred in 4 of 6 children. No evidence for outbreak-like epidemic patterns was found. Phylogenetic analysis identifi ed 3 distinct genetic lineages. Viral protein 1 amino acids were 67.9%-77.7% identical and had a distance of at least 39.4% from known cardioviruses. Because closely related strains were found on 2 continents, global distribution in humans is suspected. Saffold-like viruses may be the fi rst human cardiovirus species to be identifi ed.
Human parechoviruses (HPeVs) were detected by reverse transcription-PCR in 16.1% of 335 stool samples from children <6 years of age with enteritis in Salvador, Brazil. Whole genome sequencing of 1 sample showed a novel HPeV that has been designated as HPeV8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.