Treatment of respiratory distress syndrome in premature infants with continuous positive airway pressure (CPAP) preserves surfactant and keeps the lung open but is insufficient in severe surfactant deficiency. Traditional surfactant administration is related to short periods of positive pressure ventilation and implies the risk of lung injury. CPAP with surfactant but without any positive pressure ventilation may work synergistically. This randomized trial investigated a less invasive surfactant application protocol (LISA).OBJECTIVE To test the hypothesis that LISA increases survival without bronchopulmonary dysplasia (BPD) at 36 weeks' gestational age in extremely preterm infants. DESIGN, SETTING, AND PARTICIPANTSThe Nonintubated Surfactant Application trial was a multicenter, randomized, clinical, parallel-group study conducted between April 15, 2009, and March 25, 2012, in 13 level III neonatal intensive care units in Germany. The final follow-up date was June 21, 2012. Participants included 211 of 558 eligible (37.8%) spontaneously breathing preterm infants born between 23.0 and 26.8 weeks' gestational age with signs of respiratory distress syndrome. In an intention-to-treat design, infants were randomly assigned to receive surfactant either via a thin endotracheal catheter during CPAP-assisted spontaneous breathing (intervention group) or after conventional endotracheal intubation during mechanical ventilation (control group). Analysis was conducted from September 6, 2012, to June 20, 2013.INTERVENTION LISA via a thin catheter. MAIN OUTCOMES AND MEASURESSurvival without BPD at 36 weeks' gestational age. RESULTSOf 211 infants who were randomized, 104 were randomized to the control group and 107 to the LISA group. Of the infants who received LISA, 72 (67.3%) survived without BPD compared with 61 (58.7%) of those in the control group. The reduction in absolute risk was 8.6% (95% CI, −5.0% to 21.9%; P = .20). Intervention group infants were less frequently intubated (80 infants [74.8%] vs 103 [99.0%]; P < .001) and required fewer days of mechanical ventilation. Significant reductions were seen in pneumothorax (5 of 105 intervention group infants [4.8%] vs 13 of 103 12.6%]; P = .04) and severe intraventricular hemorrhage (11 infants [10.3%] vs 23 [22.1%]; P = .02), and the combined survival without severe adverse events was increased in the intervention group (54 infants [50.5%] vs 37 [35.6%]; P = .02; absolute risk reduction, 14.9; 95% CI, 1.4 to 28.2).CONCLUSIONS AND RELEVANCE LISA did not increase survival without BPD but was associated with increased survival without major complications. Because major complications are related to lifelong disabilities, LISA may be a promising therapy for extremely preterm infants.
www.clinicaltrials.gov NCT00705965; www.isrctn.com ISRCTN76240576.
Background COVID-19, the pandemic disease caused by infection with SARS-CoV-2, may take highly variable clinical courses, ranging from symptom-free and pauci-symptomatic to fatal disease. The goal of the current study was to assess the association of COVID-19 clinical courses controlled by patients’ adaptive immune responses without progression to severe disease with patients’ Human Leukocyte Antigen (HLA) genetics, AB0 blood group antigens, and the presence or absence of near-loss-of-function delta 32 deletion mutant of the C–C chemokine receptor type 5 (CCR5). Patient and methods An exploratory observational study including 157 adult COVID-19 convalescent patients was performed with a median follow-up of 250 days. The impact of different HLA genotypes, AB0 blood group antigens, and the CCR5 mutant CD195 were investigated for their role in the clinical course of COVID-19. In addition, this study addressed levels of severity and morbidity of COVID-19. The association of the immunogenetic background parameters were further related to patients’ humoral antiviral immune response patterns by longitudinal observation. Results Univariate HLA analyses identified putatively protective HLA alleles (HLA class II DRB1*01:01 and HLA class I B*35:01, with a trend for DRB1*03:01). They were associated with reduced durations of disease instead decreased (rather than increased) total anti-S IgG levels. They had a higher virus neutralizing capacity compared to non-carriers. Conversely, analyses also identified HLA alleles (HLA class II DQB1*03:02 und HLA class I B*15:01) not associated with such benefit in the patient cohort of this study. Hierarchical testing by Cox regression analyses confirmed the significance of the protective effect of the HLA alleles identified (when assessed in composite) in terms of disease duration, whereas AB0 blood group antigen heterozygosity was found to be significantly associated with disease severity (rather than duration) in our cohort. A suggestive association of a heterozygous CCR5 delta 32 mutation status with prolonged disease duration was implied by univariate analyses but could not be confirmed by hierarchical multivariate testing. Conclusion The current study shows that the presence of HLA class II DRB1*01:01 and HLA class I B*35:01 is of even stronger association with reduced disease duration in mild and moderate COVID-19 than age or any other potential risk factor assessed. Prospective studies in larger patient populations also including novel SARS-CoV-2 variants will be required to assess the impact of HLA genetics on the capacity of mounting protective vaccination responses in the future.
We report on diurnal and seasonal variations in sap flow rate and stem water potential of Fraxinus excelsior L. saplings growing at the edge of a Fraxino-Aceretum forest in western Germany. Because of shallow soil, the trees were subjected to drought in summer. When soil water availability was not limiting, sap flow rate was related to changes in solar radiation and vapor pressure deficit. Maximum transpiration rates per leaf area were 3.5-7.4 mmol m-2 s-1, and maximum daily totals were 1.7-3.3 kg m-2 day-1. Under drought conditions, stem water potential dropped to midday minima of -2.6 to -3.5 MPa and sap flow rate was strongly related to this parameter. After the drought period, reduced apparent (whole-plant) hydraulic conductance was observed, which was attributed to a continued reduction in stomatal conductance after the drought stress had ceased. A model was developed that linked sap flow rate directly to climatic variables and stem water potential. Good correlation between measured and simulated sap flow rates allowed the model to be used for data interpretation.
Objectives Currently, there are no approved treatments for early disease stages of COVID-19 and few strategies to prevent disease progression after infection with SARS-CoV-2. The objective of this study is to evaluate the safety and efficacy of convalescent plasma (CP) or camostat mesylate administered within 72 h of diagnosis of SARS-CoV-2 infection in adult individuals with pre-existing risk factors at higher risk of getting seriously ill with COVID-19. Camostat mesylate acts as an inhibitor of the host cell serine protease TMPRSS2 and prevents the virus from entering the cell. CP represents another antiviral strategy in terms of passive immunization. The working hypothesis to be tested in the RES-Q-HR study is that the early use of CP or camostat mesylate reduces the likelihood of disease progression to (modified) WHO stages 4b-8 in SARS-CoV-2-positive adult patients at high risk of moderate or severe COVID-19 progression. Trial design This study is a 4-arm (parallel group), multicenter, randomized (2:2:1:1 ratio), partly double-blind, controlled trial to evaluate the safety and efficacy of convalescent plasma (CP) or camostat mesylate with control or placebo in adult patients diagnosed with SARS-CoV-2 infection and high risk for progression to moderate/severe COVID-19. Superiority of the intervention arms will be tested. Participants The trial is conducted at 10–15 tertiary care centers in Germany. Individuals aged 18 years or above with ability to provide written informed consent with SARS-CoV-2 infection, confirmed by PCR within 3 days or less before enrolment and the presence of at least one SARS-CoV-2 symptom (such as fever, cough, shortness of breath, sore throat, headache, fatigue, smell/and or taste disorder, diarrhea, abdominal symptoms, exanthema) and symptom duration of not more than 3 days. Further inclusion criteria comprise: Presence of at least one of the following criteria indicating increased risk for severe COVID-19: Age > 75 years Chronic obstructive pulmonary disease (COPD) and/or pulmonary fibrosis BMI > 40 kg/m2 Age > 65 years with at least one other risk factor (BMI > 35 kg/m2, coronary artery disease (CAD), chronic kidney disease (CKD) with GFR < 60 ml/min but ≥ 30 ml/min, diabetes mellitus, active tumor disease) BMI > 35 kg/m2 with at least one other risk factor (CAD, CKD with GFR < 60 ml/min but ≥ 30 ml/min, diabetes mellitus, active tumor disease) Exclusion criteria: Age < 18 years Unable to give informed consent Pregnant women or breastfeeding mothers Previous transfusion reaction or other contraindication to a plasma transfusion Known hypersensitivity to camostat mesylate and/or severe pancreatitis Volume stress due to CP administration would be intolerable Known IgA deficiency Life expectancy < 6 months Duration SARS-CoV-2 typical symptoms > 3 days SARS-CoV-2 PCR detection older than 3 days SARS-CoV-2 associated clinical condition ≥ WHO stage 3 (patients hospitalized for other reasons than COVID-19 may be included if they fulfill all inclusion and none of the exclusion criteria) Previously or currently hospitalized due to SARS-CoV-2 Previous antiviral therapy for SARS-CoV-2 ALT or AST > 5 x ULN at screening Liver cirrhosis > Child A (patients with Child B/C cirrhosis are excluded from the trial) Chronic kidney disease with GFR < 30 ml/min Concurrent or planned anticancer treatment during trial period Accommodation in an institution due to legal orders (§40(4) AMG). Any psycho-social condition hampering compliance with the study protocol. Evidence of current drug or alcohol abuse Use of other investigational treatment within 5 half-lives of enrolment is prohibited Previous use of convalescent plasma for COVID-19 Concomitant proven influenza A infection Patients with organ or bone marrow transplant in the three months prior to screening visit Intervention and comparator Participants will be randomized to the following 4 groups: Convalescent plasma (CP), 2 units at screening/baseline visit (day 0) or day 1; CP is defined by the presence of neutralizing anti-SARS-CoV-2 antibodies with titers ≥ 1:160; individuals with body weight ≥ 150 kg will receive a third unit of plasma on day 3 Camostat mesylate (200 mg per capsule, one capsule taken each in the morning, afternoon and evening on days 1–7) Standard of care (SOC, control for CP) Placebo (identical in appearance to camostat mesylate capsules, one capsule taken each morning, afternoon and evening on days 1–7; for camostat mesylate control group) Participants will be monitored after screening/baseline on day 3, day 5, day 8, and day 14. On day 28 and day 56, telephone visits and on day 90, another outpatient visit are scheduled. Adverse events and serious adverse events will be monitored and reported until the end of the study. An independent data safety monitoring committee will review trial progression and safety. Main outcomes The primary endpoint of the study is the cumulative number of individuals who progress to or beyond category 4b on the modified WHO COVID-19 ordinal scale (defined as hospitalization with COVID-19 pneumonia and additional oxygen demand via nasal cannula or mask) within 28 days after randomization. Randomization Participants will be randomized using the Alea-Tool (aleaclinical.com) in a 2:2:1:1 ratio to the treatment arms (1) CP, (2) camostat mesylate, (3) standard of care (SoC), and (4) placebo matching camostat mesylate. Randomization will be stratified by study center. Blinding (masking) The camostat mesylate treatment arm and the respective placebo will be blinded for participants, caregivers, and those assessing outcomes. The treatment arms convalescent plasma and standard of care will not be blinded and thus are open-labeled, unblinded. Numbers to be randomized (sample size) Overall, n = 994 participants will be randomized to the following groups: n = 331 to convalescent plasma (CP), n = 331 to camostat mesylate, n = 166 to standard of care (SoC), and n = 166 to placebo matching camostat mesylate. Trial status The RES-Q-HR protocol (V04F) was approved on the 18 December 2020 by the local ethics committee and by the regulatory institutions PEI/BfARM on the 2 December 2020. The trial was opened for recruitment on 26 December 2020; the first patient was enrolled on 7 January 2021 and randomized on 8 January 2021. Recruitment shall be completed by June 2021. The current protocol version RES-Q HR V05F is from 4 January 2021, which was approved on the 18 January 2021. Trial registration EudraCT Number 2020-004695-18. Registered on September 29, 2020. ClinicalTrial.gov NCT04681430. Registered on December 23, 2020, prior to the start of the enrollment (which was opened on December 26, 2020). Full protocol The full protocol (V05F) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.