The furfurylation process is an extensively investigated wood modification process. Furfuryl alcohol molecules penetrate into the wood cell wall and polymerize in situ. This results in a permanent swelling of the wood cell walls. It is unclear whether or not chemical bonds exist between the furfuryl alcohol polymer and the wood. In the present study, five different wood species were used, both hardwoods and softwoods. They were treated with three different furfurylation procedures and leached according to three different leaching methods. The present study shows that, in general, the leachates from furfurylated wood have low toxicity. It also shows that the choice of leaching method is decisive for the outcome of the toxicity results. Earlier studies have shown that leachates from wood treated with furfuryl alcohol prepolymers have higher toxicity to Vibrio fischeri than leachates from wood treated with furfuryl alcohol monomers. This is probably attributable to differences in leaching of chemical compounds. The present study shows that this difference in the toxicity most likely cannot be attributed to maleic acid, furan, furfural, furfuryl alcohol, or 2-furoic acid. However, the difference might be caused by the two substances 5-hydroxymethylfurfural and 2,5-furandimethanol. The present study found no difference in the amount of leached furfuryl alcohol between leachates from furfurylated softwood and furfurylated hardwood species. Earlier studies have indicated differences in grafting of furfuryl alcohol to lignin. However, nothing was found in the present study that could support this. The leachates of furfurylated wood still need to be
Abstract:The aim of cell wall modification is to keep wood moisture content (MC) below favorable conditions for decay organisms. However, thermally modified, furfurylated, and acetylated woods partly show higher MCs than untreated wood in outdoor exposure. The open question is to which extent decay is influenced by the presence of liquid water in cell lumens. The present paper contributes to this topic and reports on physiological threshold values for wood decay fungi with respect to modified wood. In total, 4200 specimens made from acetylated, furfurylated, and thermally modified beech wood (Fagus sylvatica L.) and Scots pine sapwood (sW) (Pinus sylvestris L.) were exposed to Coniophora puteana and Trametes versicolor. Piles consisting of 50 small specimens were incubated above malt agar in Erlenmeyer flasks for 16 weeks. In general, pile upward mass loss (ML) and MC decreased. Threshold values for fungal growth and decay (ML ≥ 2%) were determined. In summary, the minimum MC for fungal decay was slightly below fiber saturation point of the majority of the untreated and differently modified materials. Surprisingly, T. versicolor was able to degrade untreated beech wood at a minimum of 15% MC, and growth was possible at 13% MC. By contrast, untreated pine sW was not decayed by C. puteana at less than 29% MC.
A combined wood impregnation process including impregnation with a chromium-free wood preservative and oil treatment was evaluated with regard to leaching of copper during the oil process. Two different experimental setups make up the balance of copper content in oil, wood samples and condensate water, also taking different fixation times and process durations into account. Copper is sufficiently fixed after 24 hours, and leaching of copper into the oil is low. Increasing the oil process time does not lead to increased leaching. The hot oil treatment of impregnated wood under vacuum atmosphere is a fast drying method without major negative consequences for the impregnated copper. Prozessimmanente Kupferauswaschung während eines kombinierten Holzschutzverfahrens Zusammenfassung Ein kombiniertes Holzimprägnierverfahren, das eine Imprägnierung mit einem chromfreien Holzschutzmittel und eine anschließende Ölbehandlung miteinschließt wurde im Hinblick auf die Kupferausswaschung während des Ölprozesses untersucht. Zwei unterschiedliche Versuchsaufbauten bilanzieren den Kupfergehalt im Öl, in den Holzproben und im Kondensat unter der Berücksichtigung von verschiedenen Fixierungs-und Prozesszeiten. Nach 24 Stunden ist das Kupfer ausreichend
There is a need for new solutions in wood protection against marine wood borers and termites in Europe. A new solution could be the esterification of wood with sorbitol and citric acid (SCA) since these are inexpensive and readily available feedstock chemicals and have shown protective properties against fungal wood degradation in earlier studies and prevented macrobiological degradation, as shown in this study. Protection of wood products in the marine environment lacks available wood preservatives that are approved for marine applications. Termite infestation is opposed mainly by biocide treatments of wood. Several wood modification systems show high resistance against both marine borers and subterranean termites. However, the existing commercialized wood modification products are costly. Both macrobiological forms of degradation represent a great threat for most European wood species, which are rapidly and severely degraded if not properly treated. This study investigated esterified wood in standard field trials against marine wood borers, and against subterranean termites in laboratory trials in a no-choice and choice test. The treatment showed good resistance against wood borers in the marine environment after one season and against subterranean termites in the laboratory after eight weeks. The low termite survival rate (SR) in the no-choice test during the first week of testing indicates a mode of action that is incomparable to other wood modification treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.