Immune evasion in lung cancer results from both structural and functional alterations of human leukocyte antigen (HLA) class I molecules and the local release of immunosuppressive cytokines. Recent data suggest that HLA-G, a nonclassical class Ib molecule, is involved in immune evasion by tumor cells. We sought to determine whether HLA-G could contribute to immunescape in lung cancer. All of 19 tumor specimens examined demonstrated detectable membrane-bound (HLA-G1), as well as soluble (HLA-G5) isoform transcription. Nine of 34 (26%) tumors were positive by immunohistochemistry using monoclonal antibody (mAb) 4H84, recognizing all denatured HLA-G isoforms, of which six were positive using mAb 16G1, recognizing soluble HLA-G. HLA-G immunoreactivity correlated with high-grade histology, with HLA-G being preferentially expressed on large-cell carcinomas. In these patients, loss of classical HLA class I molecules was observed to associate with HLA-G protein up-regulation. Moreover, we found interleukin-10 expressed in 15 of 34 (44%) tumors, and in most of the HLA-G-positive cases (7 of 9), suggesting up-modulation of HLA-G by interleukin-10. It is conceivable that HLA-G expression in lung cancer might be one of the ways how the tumor down-regulates host immune response, in addition to interleukin-10 production and HLA class I loss.
Although the idiotypic structures of immunoglobulin from malignant B cells were the first tumor-specific determinants recognized, and clinical vaccination trials have demonstrated induction of tumor-specific immunity, the function of immunoglobulin-specific CD8+ cytotoxic T lymphocytes in tumor rejection remains elusive. Here, we combined bioinformatics and a T cell-expansion system to identify human immunoglobulin-derived peptides capable of inducing cytotoxic T-lymphocyte responses. Immunogenic peptides were derived from framework regions of the variable regions of the immunoglobulin that were shared among patients. Human-leukocyte-antigen-matched and autologous cytotoxic T lymphocytes specific for these peptides killed primary malignant B cells, demonstrating that malignant B cells are capable of processing and presenting such peptides. Targeting shared peptides to induce T-cell responses might further improve current vaccination strategies in B-cell malignancies.
BackgroundThe well-being of breast cancer patients and reporting of adverse events require close monitoring. Mobile apps allow continuous recording of disease- and medication-related symptoms in patients undergoing chemotherapy.ObjectiveThe aim of the study was to evaluate the effects of a mobile app on patient-reported daily functional activity in a supervised and unsupervised setting.MethodsWe conducted a randomized controlled study of 139 breast cancer patients undergoing chemotherapy. Patient status was self-measured using Eastern Cooperative Oncology Group scoring and Common Terminology Criteria for Adverse Events. Participants were randomly assigned to a control group, an unsupervised group that used a mobile app to record data, or a supervised group that used the app and reviewed data with a physician. Primary outcome variables were change in daily functional activity and symptoms over three outpatient visits.ResultsFunctional activity scores declined in all groups from the first to second visit. However, from the second to third visit, only the supervised group improved, whereas the others continued to decline. Overall, the supervised group showed no significant difference from the first (median 90.85, IQR 30.67) to third visit (median 84.76, IQR 18.29, P=.72). Both app-using groups reported more distinct adverse events in the app than in the questionnaire (supervised: n=1033 vs n=656; unsupervised: n=852 vs n=823), although the unsupervised group reported more symptoms overall (n=4808) in the app than the supervised group (n=4463).ConclusionsThe mobile app was associated with stabilized daily functional activity when used under collaborative review. App-using participants could more frequently report adverse events, and those under supervision made fewer and more precise entries than unsupervised participants. Our findings suggest that patient well-being and awareness of chemotherapy adverse effects can be improved by using a mobile app in collaboration with the treating physician.ClinicalTrialClinicalTrials.gov NCT02004496; https://clinicaltrials.gov/ct2/show/NCT02004496 (Archived by WebCite at http://www.webcitation.org/6k68FZHo2)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.