BackgroundNatural product-likeness of a molecule, i.e. similarity of this molecule to the structure space covered by natural products, is a useful criterion in screening compound libraries and in designing new lead compounds. A closed source implementation of a natural product-likeness score, that finds its application in virtual screening, library design and compound selection, has been previously reported by one of us. In this note, we report an open-source and open-data re-implementation of this scoring system, illustrate its efficiency in ranking small molecules for natural product likeness and discuss its potential applications.ResultsThe Natural-Product-Likeness scoring system is implemented as Taverna 2.2 workflows, and is available under Creative Commons Attribution-Share Alike 3.0 Unported License at http://www.myexperiment.org/packs/183.html. It is also available for download as executable standalone java package from http://sourceforge.net/projects/np-likeness/under Academic Free License.ConclusionsOur open-source, open-data Natural-Product-Likeness scoring system can be used as a filter for metabolites in Computer Assisted Structure Elucidation or to select natural-product-like molecules from molecular libraries for the use as leads in drug discovery.
Molecular fragment dynamics (MFD) is a variant of dissipative particle dynamics (DPD), a coarse-grained mesoscopic simulation technique for isothermal complex fuids and soft matter systems with particles that are chosen to be adequate fluid elements. MFD choses its particles to be small molecules which may be connected by harmonic springs to represent larger molecular entities in order to maintain a comparatively accurate representation of covalent bonding and molecular characteristics. For this study the MFD approach is extended to accomplish long-term simulations (up to the microsecond scale) of large molecular ensembles (representing millions of atoms) containing phospholipid membranes, peptides, and proteins. For peptides and proteins a generally applicable fragmentation scheme is introduced in combination with specific backbone forces that keep native spatial shapes with adequate levels of flexibility or rigidity. The new approach is demonstrated by MFD simulations of the formation and characteristics of phospholipid membranes and vesicles, vesicle-membrane fusion, the backbone force dependency of the overall structural flexibility of dumbbell-shaped Calmodulin, the stability of subunit-aggregation of tetrameric hemoglobin, and the collaborative interaction of Kalata B1 cyclotides with a phospholipid membrane. All findings are in reasonable agreement with experimental as well as alternative simulation results. Thus, the extended MFD approach may become a new tool for biomolecular system studies to allow for comparatively fast simulative investigations in combination with a comparatively high chemical granularity.
BackgroundMesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application.ResultsThe molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted fSMILES) with connected molecular fragments to represent a molecular structure. The fSMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software.ConclusionsMesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and conceptual usage hurdles. Molecular Fragment Cheminformatics may be regarded as a crucial accelerator to propagate MFD and similar mesoscopic simulation techniques in the molecular sciences.Graphical abstractA molecular fragment cheminformatics roadmap for mesoscopic simulation.
BackgroundThe computational processing and analysis of small molecules is at heart of cheminformatics and structural bioinformatics and their application in e.g. metabolomics or drug discovery. Pipelining or workflow tools allow for the Lego™-like, graphical assembly of I/O modules and algorithms into a complex workflow which can be easily deployed, modified and tested without the hassle of implementing it into a monolithic application. The CDK-Taverna project aims at building a free open-source cheminformatics pipelining solution through combination of different open-source projects such as Taverna, the Chemistry Development Kit (CDK) or the Waikato Environment for Knowledge Analysis (WEKA). A first integrated version 1.0 of CDK-Taverna was recently released to the public.ResultsThe CDK-Taverna project was migrated to the most up-to-date versions of its foundational software libraries with a complete re-engineering of its worker's architecture (version 2.0). 64-bit computing and multi-core usage by paralleled threads are now supported to allow for fast in-memory processing and analysis of large sets of molecules. Earlier deficiencies like workarounds for iterative data reading are removed. The combinatorial chemistry related reaction enumeration features are considerably enhanced. Additional functionality for calculating a natural product likeness score for small molecules is implemented to identify possible drug candidates. Finally the data analysis capabilities are extended with new workers that provide access to the open-source WEKA library for clustering and machine learning as well as training and test set partitioning. The new features are outlined with usage scenarios.ConclusionsCDK-Taverna 2.0 as an open-source cheminformatics workflow solution matured to become a freely available and increasingly powerful tool for the biosciences. The combination of the new CDK-Taverna worker family with the already available workflows developed by a lively Taverna community and published on myexperiment.org enables molecular scientists to quickly calculate, process and analyse molecular data as typically found in e.g. today's systems biology scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.