a b s t r a c tOcean energy has the potential to play a significant role in the future energy system, whilst contributing to the reduction of carbon emissions and stimulating economic growth in coastal and remote areas. Ocean energy has attracted increasing interest, particularly in the EU, which is currently at the forefront of ocean energy development.Tidal and Wave energy represents the two most advance types of ocean energy technologies. In the EU, the aim is to reach 100 GW of combined wave and tidal capacity installed by 2050. In order to achieve these targets the sector needs to overcome a series of challenges and barriers with regards to technology readiness, financing and market establishment, administrative and environmental issues and the availability of grid connections especially in remote areas. Currently these barriers are hindering the sector's progress; its ability to attract inwards investments and to engage with the supply chain to unlock cost-reduction mechanisms. A number of policy initiatives and mechanisms have been put in place to ensure that ocean energy technologies could become cost-competitive in the short term, in order to exploit the benefits that these technologies could provide to the EU.
Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods The study followed the methodology of life cycle assessment including all life cycle steps from cradle to grave. The various types of device were assessed, on the basis of a functional unit of 1 kWh of electricity delivered to the grid. The impact categories investigated were based on the ILCD recommendations. The life cycle models were set up using detailed technical information on the components and structure of around 180 ocean energy devices from an in-house database.Results and discussion The design of ocean energy devices still varies considerably, and their weight ranges from 190 to 1270 t, depending on device type. Environmental impacts are closely linked to material inputs and are caused mainly by mooring and foundations and structural components, while impacts from assembly, installation and use are insignificant for all device types. Total greenhouse gas emissions of ocean energy devices range from about 15 to 105 g CO 2 -eq. kWh −1 . Average global warming potential for all device types is 53 ± 29 g CO 2 -eq. kWh −1 . The results of this study are comparable with those of other studies and confirm that the environmental impacts of ocean energy devices are comparable with those of other renewable technologies and can contribute to a more sustainable energy supply. Conclusions Ocean energy devices are still at an early stage of development compared with other renewable energy technologies. Their environmental impacts can be further reduced by technology improvements already being pursued by developers (e.g. increased efficiency and reliability). Future life cycle assessment studies should assess whole ocean energy arrays or ocean energy farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.