Mitotic phosphorylation of the spindle checkpoint component BubR1 is highly conserved throughout evolution. Here, we demonstrate that BubR1 is phosphorylated on the Cdk1 site T620, which triggers the recruitment of Plk1 and phosphorylation of BubR1 by Plk1 both in vitro and in vivo. Phosphorylation does not appear to be required for spindle checkpoint function but instead is important for the stability of kinetochore-microtubule (KT-MT) interactions, timely mitotic progression, and chromosome alignment onto the metaphase plate. By quantitative mass spectrometry, we identify S676 as a Plk1-specific phosphorylation site on BubR1. Furthermore, using a phospho-specific antibody, we show that this site is phosphorylated during prometaphase, but dephosphorylated at metaphase upon establishment of tension between sister chromatids. These findings describe the first in vivo verified phosphorylation site for human BubR1, identify Plk1 as the kinase responsible for causing the characteristic mitotic BubR1 upshift, and attribute a KT-specific function to the hyperphosphorylated form of BubR1 in the stabilization of KT-MT interactions.[Keywords: BubR1; tension; phosphorylation; spindle assembly checkpoint] Supplemental material is available at http://www.genesdev.org. The BubR1 protein was first identified as an essential and evolutionarily conserved component of the spindle assembly checkpoint (SAC). During mitosis, this checkpoint inhibits the anaphase-promoting complex/cyclosome (APC/C), a large E3 ubiquitin ligase, so that chromosome segregation is triggered only after bipolar attachment to the spindle microtubules (MTs) has been achieved (Musacchio and Hardwick 2002;Bharadwaj and Yu 2004;Taylor et al. 2004). SAC dysfunction and the consequential premature APC/C activation can result in aneuploidy, a hallmark of human solid tumors (Kops et al. 2005). Throughout prophase and prometaphase, SAC components including BubR1 are enriched at kinetochores (KTs), complex proteinaceous structures assembled on centromeric DNA, where a "wait anaphase" signal is thought to be generated. KTs represent the major point of contact between mitotic spindle MTs and chromosomes (Maiato et al. 2004;Chan et al. 2005). Several proteins and multiprotein complexes, including BubR1 ( In addition, KT-associated proteins contribute to maintain SAC activity until the last chromosome has undergone bipolar attachment. Although the exact nature of SAC signaling is not well understood, biochemical and genetic evidence indicate that the source of this signal is at the centromere/KT, where tension generated upon amphitelic attachment is sensed (Pinsky and Biggins 2005;Baumann et al. 2007). How such a mechanical property is transduced into a biochemical signaling cascade remains unclear, but there is strong evidence that phosphorylation plays a key role (Gorbsky 1995).Along with APC/C-mediated proteolyis, M-phase progression is controlled through phosphorylation by mitotic kinases. In addition to the key regulator cyclindependent kinase 1 (Cdk1), Polo-like ...
Centrioles are the main constituents of the mammalian centrosome and act as basal bodies for ciliogenesis. Centrosomes organize the cytoplasmic microtubule network during interphase and the mitotic spindle during mitosis, and aberrations in centrosome number have been implicated in chromosomal instability and tumor formation. The centriolar protein Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis and is crucial for maintaining constant centriole number, but the mechanisms regulating its activity and expression are only beginning to emerge. Here, we show that human Plk4 is subject to βTrCP-dependent proteasomal degradation, indicating that this pathway is conserved from Drosophila to human. Unexpectedly, we found that stable overexpression of kinase-dead Plk4 leads to centriole overduplication. This phenotype depends on the presence of endogenous wild-type Plk4. Our data indicate that centriole overduplication results from disruption of Plk4 trans-autophosphorylation by kinase-dead Plk4, which then shields endogenous Plk4 from recognition by βTrCP. We conclude that active Plk4 promotes its own degradation by catalyzing βTrCP binding through trans-autophosphorylation (phosphorylation by the other kinase in the dimer) within homodimers.
Mitotic spindle formation and chromosome segregation depend critically on kinetochore–microtubule (KT–MT) interactions. A new protein, termed Spindly in Drosophila and SPDL-1 in C. elegans, was recently shown to regulate KT localization of dynein, but depletion phenotypes revealed striking differences, suggesting evolutionarily diverse roles of mitotic dynein. By characterizing the function of Spindly in human cells, we identify specific functions for KT dynein. We show that localization of human Spindly (hSpindly) to KTs is controlled by the Rod/Zw10/Zwilch (RZZ) complex and Aurora B. hSpindly depletion results in reduced inter-KT tension, unstable KT fibers, an extensive prometaphase delay, and severe chromosome misalignment. Moreover, depletion of hSpindly induces a striking spindle rotation, which can be rescued by co-depletion of dynein. However, in contrast to Drosophila, hSpindly depletion does not abolish the removal of MAD2 and ZW10 from KTs. Collectively, our data reveal hSpindly-mediated dynein functions and highlight a critical role of KT dynein in spindle orientation.
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at ∼1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin.
SummaryThe BubR1 checkpoint protein performs multiple functions in mitosis. We have carried out a functional analysis of conserved motifs of human BubR1 (also known as BUB1B) and demonstrate that spindle assembly checkpoint (SAC) and chromosome attachment functions can be uncoupled from each other. Mutation of five proline-directed serine phosphorylation sites, identified in vivo by mass spectrometry, essentially abolishes attachment of chromosomes to the spindle but has no effect on SAC functionality. By contrast, mutation of the two conserved KEN boxes required for SAC function does not impact chromosome congression. Interestingly, the contribution of the two KEN-box motifs is not equal. Cdc20 associates with the N-terminal but not C-terminal KEN box, and mutation of the N-terminal KEN motif results in more severe acceleration of mitotic timing. Moreover, the two KEN motifs are not sufficient for maximal binding of Cdc20 and APC/C, which also requires sequences in the BubR1 C-terminus. Finally, mutation of the GLEBS motif causes loss of Bub3 interaction and mislocalization of BubR1 from the kinetochore; concomitantly, BubR1 phosphorylation as well as SAC activity and chromosome congression are impaired, indicating that the GLEBS motif is strictly required for both major functions of human BubR1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.