We investigated the changes in gene expression accompanying the development and progression of kidney cancer by use of 31,500-element complementary DNA arrays. We measured expression profiles for paired neoplastic and noncancerous renal epithelium samples from 37 individuals. Using an experimental design optimized for factoring out technological and biological noise, and an adapted statistical test, we found 1738 differentially expressed cDNAs with an expected number of six false positives. Functional annotation of these genes provided views of the changes in the activities of specific biological pathways in renal cancer. Cell adhesion, signal transduction, and nucleotide metabolism were among the biological processes with a large proportion of genes overexpressed in renal cell carcinoma. Down-regulated pathways in the kidney tumor cells included small molecule transport, ion homeostasis, and oxygen and radical metabolism. Our expression profiling data uncovered gene expression changes shared with other epithelial tumors, as well as a unique signature for renal cell carcinoma. [Expression data for the differentially expressed cDNAs are available as a Web supplement at http://www.dkfz-heidelberg.de/abt0840/whuber/rcc.]
We have used a reconstituted cell-free transcription system to investigate the molecular basis of mitotic repression of RNA polymerase I (pol I) transcription. We demonstrate that SL1, the TBP-containing promoter-binding factor, is inactivated by cdc2/cyclin B-directed phosphorylation, and reactivated by dephosphorylation. Transcriptional inactivation in vitro is accompanied by phosphorylation of two subunits, e.g. TBP and hTAF I 110. To distinguish whether transcriptional repression is due to phosphorylation of TBP, hTAF I 110 or both, SL1 was purified from two HeLa cell lines that express either full-length or the core domain of TBP only. Both TBP-TAF I complexes exhibit similar activity and both are repressed at mitosis, indicating that the variable N-terminal domain which contains multiple target sites for cdc2/cyclin B phosphorylation is dispensable for mitotic repression. Protein-protein interaction studies reveal that mitotic phosphorylation impairs the interaction of SL1 with UBF. The results suggest that phosphorylation of SL1 is used as a molecular switch to prevent pre-initiation complex formation and to shut down rDNA transcription at mitosis.
The saccharomicins A and B, produced by the actinomycete Saccharothrix espanaensis, are oligosaccharide antibiotics. They consist of 17 monosaccharide units and the unique aglycon N-(m,p-dihydroxycinnamoyl)taurine. To investigate candidate genes responsible for the formation of trans-m,p-dihydroxycinnamic acid (caffeic acid) as part of the saccharomicin aglycon, gene expression experiments were carried out in Streptomyces fradiae XKS. It is shown that the biosynthetic pathway for trans-caffeic acid proceeds from L-tyrosine via trans-p-coumaric acid directly to trans-caffeic acid, since heterologous expression of sam8, encoding a tyrosine ammonia-lyase, led to the production of trans-p-hydroxycinnamic acid (coumaric acid), and coexpression of sam8 and sam5, the latter encoding a 4-coumarate 3-hydroxylase, led to the production of trans-m,p-dihydroxycinnamic acid. This is not in accordance with the general phenylpropanoid pathway in plants, where trans-pcoumaric acid is first activated before the 3-hydroxylation of its ring takes place.Saccharothrix is a genus of gram-positive bacteria belonging to the well-known order Actinomycetales. Most agents used at present for the treatment of bacterial infections were discovered in members of the Actinomycetales. Saccharothrix espanaensis produces the two heptadecaglycoside antibiotics saccharomicins A and B, which represent a new class of antibiotics (15, 18). They exhibit potent antibacterial activity both in vitro and in vivo against multiply-resistant strains of Staphylococcus aureus as well as vancomycin-resistant enterococci (25). The saccharomicins consist of an oligosaccharide portion and the intriguing aglycon N-(m,p-dihydroxycinnamoyl)taurine (Fig. 1), in which caffeic acid is linked to the amino sulfonic acid taurine via an amide bond.Enzymes belonging to the group of ammonia-lyases catalyze the conversion of ␣-amino acids into ␣,-unsaturated acids by elimination of ammonia. Ubiquitous in plants and fungi, phenylalanine ammonia-lyase (PAL) (EC 4.3.1.5) catalyzes the nonoxidative deamination of the primary amino acid L-phenylalanine to trans-cinnamic acid (trans-cinnamate), which is the first reaction of the so-called general phenylpropanoid pathway in plants (8). Phenylpropanoids include several important natural product classes, for example, flavonoids, lignins, and coumarins. In monocotyledons, PAL utilizes L-tyrosine in addition to L-phenylalanine (resulting in trans-p-coumaric acid), whereas the enzyme from dicotyledons converts only L-phenylalanine sufficiently. Both PAL and tyrosine ammonia-lyase (TAL) activity are very rare in bacteria (17, 30).The next reactions of the three-step general phenylpropanoid pathway are catalyzed by the enzymes trans-cinnamate 4-monooxygenase (also called cinnamate 4-hydroxylase; EC 1.14.13.11), leading to trans-p-coumaric acid (trans-4-coumarate), and 4-coumarate-coenzyme A (CoA) ligase (EC 6.2.1.12), leading to 4-coumaroyl-CoA (8).In this report, we describe the cloning and identification of two genes from S. espanaensis w...
The avilamycin A biosynthetic gene cluster represents an interesting system to study the formation and attachment of unusual deoxysugars. Several enzymes putatively responsible for specific steps of this pathway could be assigned. Two genes encoding enzymes involved in post-PKS tailoring reactions were deleted allowing the production of new analogues of avilamycin A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.