The transition from a command to a market economy resulted in widespread cropland abandonment across the former Soviet Union during the 1990s. Spatial patterns and determinants of abandonment are comparatively well understood for European Russia, but have not yet been assessed for the vast grain belt of Western Siberia, situated in the Eurasian forest steppe. This is unfortunate, as land-use change in Western Siberia is of global significance: Fertile black earth soils and vast mires store large amounts of organic carbon, and both undisturbed and traditional cultural landscapes harbor threatened biodiversity. We compared Landsat images from ca. 1990 (before the break-up of the Soviet Union) and ca. 2015 (current situation) with a supervised classification to estimate the extent and spatial distribution of abandoned cropland. We used logistic regression models to reveal important determinants of cropland abandonment. Ca. 135,000 ha classified as cropland around 1990 were classified as grassland around 2015. This suggests that ca. 20% of all cropland remain abandoned ca. 25 years after the end of the Soviet Union. Abandonment occurred mostly at poorly drained sites. The likelihood of cropland abandonment increased with decreasing soil quality, and increasing distance to medium-sized settlements, roads and railroads. We conclude that soil suitability, access to transport infrastructure and availability of workforce are key determinants of cropland abandonment in Western Siberia.
The winning entry of the 2015 IEEE Scientific Visualization Contest, this article describes a visualization tool for cosmological data resulting from dark-matter simulations. The proposed system helps users explore all aspects of the data at once and receive more detailed information about structures of interest at any time. Moreover, novel methods for visualizing and interactively exploring dark-matter halo substructures are proposed.
ABSTRACT:DeCOVER serves as a national extension of the European Global Monitoring for Environment and Security (GMES) initiative. It was initiated to develop land cover information services adapted to German user needs. One of its three service developments pillars is the application of Remote Sensing to support environmental monitoring schemes under the European Habitats Directive. Within two DeCOVER test sites located in North-Rhine Westphalia/Germany an object-based indicator classification approach is currently being developed to monitor heath habitats of importance under the Habitats Directive. While many previous Remote Sensing projects have focused on the discrete classification of habitat types to replace fieldwork, our approach is embedded in a strong operational context to a) focus and direct fieldwork efforts by pre-field visit assessment of habitat changes (change detection) and b) support fieldwork by contributing quality parameters and GIS-ready geometries. Using Geoeye satellite data (VHR component) and RapidEye satellite images (Multi-temporal HR component) together with existing habitat and biotope maps (knowledge and post-classification component) an image analysis approach is realised using object-based classification routines based on data mining tools to derive training information. To extract meaningful objects of heath-, sand-and grassland from the VHR-data, training sample areas have to be assigned. Thresholds and appropriate features for describing these samples are analysed by statistical algorithms and are used in the following classification. A multi-temporal approach for the acquisition of tree habitat areas integrates two RapidEye scenes into the classification process. To validate classification accuracies and potential transects were sampled in the field and analyzed for their structural composition using top view field photos of 1m². First results demonstrate the realistic option to directly support the fieldwork or reduce its post-processing costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.