Ultrasonic clamp-on meters have become an established technology for non-invasive flow measurements. Under disturbed flow conditions, their measurement values must be adjusted with corresponding fluid mechanical calibration factors. Due to the variety of flow disturbances and installation positions, the experimental determination of these factors often needs to be complemented by computational fluid dynamics (CFD) simulations. From a metrological perspective, substituting experiments with simulation results raises the question of how confidence in a so-called virtual measurement can be ensured. While there are well-established methods to estimate errors in CFD predictions in general, strategies to meet metrological requirements for CFD-based virtual meters have yet to be developed. In this paper, a framework for assessing the overall uncertainty of a virtual flow meter is proposed. In analogy to the evaluation of measurement uncertainty, the approach is based on the utilization of an expanded simulation uncertainty representing the entirety of the computational domain. The study was conducted using the example of an ultrasonic clamp-on meter downstream of a double bend out-of-plane. Nevertheless, the proposed method applies to other flow disturbances and different types of virtual meters. The comparison between laboratory experiments and simulation results with different turbulence modeling approaches demonstrates a clear superiority of hybrid RANS-LES models over the industry standard RANS. With an expanded simulation uncertainty of 1.44e-2, the virtual measurement obtained with a hybrid model allows for a continuous determination of calibration factors applicable to the relevant mounting positions of a real meter at a satisfactory level of confidence.
Zusammenfassung
Eine Aufgabe der Metrologie ist die Bestimmung von
Messunsicherheiten.
Auch unter industriellen, nicht-idealen Bedingungen muss
gewährleistet werden, dass Messgeräte innerhalb der
vorgeschriebenen Toleranzen arbeiten.
Bei der Modellierung können auftretende Störungen als
Zufallsvariablen aufgefasst werden.
Ihr Einfluss auf die Zielgröße kann mit Hilfe der
verallgemeinerten Polynomchaos-Methode bestimmt werden, die zum
Einsatz in Systemen mit aufwändigen Computermodellen entwickelt
worden ist.
Dieser Ansatz ermöglicht es, die erwarteten Abweichungen
sowie deren Varianz äußerst effizient zu berechnen.
In diesem Beitrag wird diese Methode exemplarisch auf zwei
Probleme aus der Strömungsmesstechnik angewandt, in denen
turbulente Strömungen mit Hilfe der Reynolds-gemittelten
Navier-Stokes-Gleichungen modelliert werden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.