The primary aim of this paper is to analyze the impact of mechanical pre‐damage and alkali–silica reaction (ASR) on the fracture mechanical properties of pavement concrete. For this purpose, a four point bending test was applied to large format beams to produce a defined level of cyclic pre‐damage. The fatigue‐induced concrete degradation process was simultaneously recorded using a testing procedure specifically developed for the purpose. In addition, fatigue‐induced cracks on extracted drilling cores were spatially visualized and quantified using micro X‐ray 3D‐computed tomography (3D‐CT). The storage of the small‐format test specimens, with and without cyclic pre‐damage, in an ASR‐conducive environment showed that pre‐damage leads to an increase in ASR damage processes. Subsequent structural mechanical investigations on small format specimens with and without pre‐damage show that fatigue loading and ASR significantly influence fracture mechanical parameters of the concrete.
Ausgehend von der Zielsetzung der DFG‐Forschergruppe 1498, die Einflüsse auf den AKR‐Schädigungsprozess in Fahrbahndecken aus Beton grundlegend zu klären, sind zwei aufeinander aufbauende Untersuchungsschwerpunkte Gegenstand dieses Beitrags. Im ersten Schwerpunkt wurden die prüftechnischen Voraussetzungen für die Charakterisierung der Degradation und damit der Rissbildung im Fahrbahndeckenbeton durch die Vorschädigung infolge von Ermüdungsbeanspruchungen geschaffen. Realisiert wurde dies durch die Implementierung und Optimierung eines Monitoringsystems im zyklischen 4‐Punkt‐Biegeversuch zur simultanen Erfassung der Rissbildung im großformatigen Schwingbalken. Zusätzlich wurde die Röntgen‐3D‐Computertomografie für die hochauflösende räumliche quantitative Rissanalyse in den Bohrkernen aus den Schwingbalken ohne und mit Vorschädigung weiterentwickelt. Im zweiten Untersuchungsschwerpunkt wurde mittels vielfältiger Experimente an kleinformatigen Probekörpern aus dem Schwingbalken gezeigt, dass durch die Ermüdungsbeanspruchung die bruchmechanischen Materialkennwerte des Betons zum Teil eine signifikante Veränderung erfahren. Effects of fatigue loading on structure and properties of pavement concrete Based on the objective of the DFG (German research foundation) funded research group 1498 to clarify the influences on the ASR damage process, this paper deals with two focuses of investigation. In the first focus the technical requirements for the characterisation concerning the degradation and the formation of cracks in concrete pavements by the pre‐damage as a result of fatigue loading were created. This was realized by the implementation and the optimisation of a monitoring system in the cyclic four point bending test to capture simultaneously the formation of cracks in the beam under sinusoidal bending load. In addition, the X‐ray 3D‐computed tomography was enhanced for the high‐resolution quantitative spatial crack analysis in the drilling cores extracted of the beam under sinusoidal bending load without and with a pre‐damage. Building on the first focus, in the second focus of investigation a significant change of the fracture‐mechanical properties of the concrete as a result of fatigue loading has been demonstrated in numerous experiments using small specimens extracted from the beam under sinusoidal bending load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.