Alzheimer's disease (AD) is characterized by amyloid-beta (A)-containing plaques, neurofibrillary tangles, and neuron and synapse loss. Tangle formation has been reproduced in P301L tau transgenic pR5 mice, whereas APP sw PS2 N141I double-transgenic APP152 mice develop A plaques. Cross-breeding generates triple transgenic ( triple AD) mice that combine both pathologies in one model. To determine functional consequences of the combined A and tau pathologies, we performed a proteomic analysis followed by functional validation. Specifically, we obtained vesicular preparations from triple AD mice, the parental strains, and nontransgenic mice, followed by the quantitative mass-tag labeling proteomic technique iTRAQ and mass spectrometry. Within 1,275 quantified proteins, we found a massive deregulation of 24 proteins, of which one-third were mitochondrial proteins mainly related to complexes I and IV of the oxidative phosphorylation system (OXPHOS). Notably, deregulation of complex I was tau dependent, whereas deregulation of complex IV was A dependent, both at the protein and activity levels. Synergistic effects of A and tau were evident in 8-month-old triple AD mice as only they showed a reduction of the mitochondrial membrane potential at this early age. At the age of 12 months, the strongest defects on OXPHOS, synthesis of ATP, and reactive oxygen species were exhibited in the triple AD mice, again emphasizing synergistic, age-associated effects of A and tau in perishing mitochondria. Our study establishes a molecular link between A and tau protein in AD pathology in vivo, illustrating the potential of quantitative proteomics.amyloid-beta peptide ͉ electron transport chain ͉ energy metabolism ͉ mitochondrial complexes ͉ tau protein A lzheimer's disease (AD) is a devastating neurodegenerative disorder affecting Ͼ15 million people worldwide (1). The key histopathological features are amyloid-beta (A)-containing plaques and microtubule-associated protein tau-containing neurofibrillary tangles (NFTs), along with neuronal and synapse loss in selected brain areas (2, 3). In determining the role of distinct proteins in these processes, traditionally, candidate-driven approaches have been pursued, linking neuronal dysfunction to the distribution of known proteins in healthy compared with degenerating neurons, or in transgenic compared with control brain. In comparison, proteomics offers a powerful nonbiased approach as shown by us previously (4, 5).APP152 (APP/PS2) double-transgenic mice model the A plaque pathology of AD (6); they coexpress the N141I mutant form of PS2 together with the APP sw mutant found in familial cases of AD. The mice display age-related cognitive deficits associated with discrete brain A deposition and inflammation (6). pR5 mice model the tangle pathology of AD (7-9). They express P301L mutant tau found in familial cases of frontotemporal dementia (FTD), a dementia related to AD. The pR5 mice show a hippocampus-and amygdala-dependent behavioral impairment related to AD (10). Crossing of ...
Nicotine, a component of tobacco, is highly addictive but possesses beneficial properties such as cognitive improvements and memory maintenance. Involved in these processes is the neuronal nicotinic acetylcholine receptor (nAChR) alpha7, whose activation triggers depolarization, intracellular signaling cascades, and synaptic plasticity underlying addiction and cognition. It is therefore important to investigate intracellular mechanisms by which a cell regulates alpha7 nAChR activity. We have examined the role of phosphorylation by combining molecular biology, biochemistry, and electrophysiology in SH-SY5Y neuroblastoma cells, Xenopus oocytes, rat hippocampal interneurons, and neurons from the supraoptic nucleus, and we found tyrosine phosphorylation of alpha7 nAChRs. Tyrosine kinase inhibition by genistein decreased alpha7 nAChR phosphorylation but strongly increased acetylcholine-evoked currents, whereas tyrosine phosphatase inhibition by pervanadate produced opposite effects. Src-family kinases (SFKs) directly interacted with the cytoplasmic loop of alpha7 nAChRs and phosphorylated the receptors at the plasma membrane. SFK inhibition by PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] or SU6656 (2,3-dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,7-tetrahydro-1H-indol-2-yl)methylene]-1H-indole-5-sulfonamide) increased alpha7 nAChR-mediated responses, whereas expression of active Src reduced alpha7 nAChR activity. Mutant alpha7 nAChRs lacking cytoplasmic loop tyrosine residues because of alanine replacement of Tyr-386 and Tyr-442 were more active than wild-type receptors and insensitive to kinase or phosphatase inhibition. Because the amount of surface alpha7 receptors was not affected by kinase or phosphatase inhibitors, these data show that functional properties of alpha7 nAChRs depend on the tyrosine phosphorylation status of the receptor and are the result of a balance between SFKs and tyrosine phosphatases. These findings reveal novel regulatory mechanisms that may help to understand nicotinic receptor-dependent plasticity, addiction, and pathology.
The first tau transgenic mouse model was established more than a decade ago. Since then, much has been learned about the role of tau in Alzheimer's disease and related disorders. Animal models, both in vertebrates and invertebrates, were significantly improved and refined as a result of the identification of pathogenic mutations in Tau in human cases of frontotemporal dementia. They have been instrumental for dissecting the cross-talk between tau and the second hallmark lesion of Alzheimer's disease, the Ab peptide-containing amyloid plaque. We discuss how the tau models have been used to unravel the pathophysiology of Alzheimer's disease, to search for disease modifiers and to develop novel treatment strategies. While tau has received less attention than Ab, it is rapidly acquiring a more prominent position and the emerging view is one of a synergistic action of Ab and tau in Alzheimer's disease. Moreover, the existence of a number of neurodegenerative diseases with tau pathology in the absence of extracellular deposits underscores the relevance of research on tau.Brain Pathol 2007;17:91-103. INTRODUCTIONHistopathologically, the Alzheimer's disease (AD) brain is characterized by abundant amyloid plaques, neurofibrillary lesions and the loss of nerve cells and synapses. This review focuses on tau, a microtubule-associated protein (MAP) and the principal component of the neurofibrillary lesions (41). They are found in nerve cell bodies and apical dendrites as neurofibrillary tangles (NFTs), in distal dendrites as neuropil threads and in the abnormal neurites that are associated with some amyloid plaques (neuritic plaques). In the absence of plaques, tau inclusions are abundant in a range of neurodegenerative diseases, which include Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), argyrophilic grain disease, sporadic frontotemporal dementia (FTD) and the inherited FTD and Parkinsonism linked to chromosome 17 (FTDP-17) (48,86).Tau is expressed predominantly in neurons and at lower levels in astrocytes and oligodendrocytes (143). Moreover, in some diseases, tau also forms aggregates in glial cells and these can outnumber neurons with aggregates (48). Tau contains a particularly high content of serines and threonines, many of which are phosphorylated under physiological conditions (42). Under pathological conditions, tau becomes hyperphosphorylated, which means a higher degree of phosphorylation at physiological sites, as well as de novo phosphorylation at additional sites (15, 43). Phosphorylation decreases the binding of tau to microtubules. This increases the pool of soluble tau and is thought to trigger the disintegration of microtubules (43). In addition to phosphorylation, tau is subject to ubiquitination, nitration, truncation, prolyl isomerization, association with heparan sulphate proteoglycans, glycosylation, glycation and modification by advanced glycation end-products (AGEs) (20).Mutations in Tau have not been found in AD. Instead, mutations have been identifie...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.